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Preface

Almost 12 years have passed by since we wrote Chaos and Fractals. At the time we were hoping
that our approach of writing a book which would be both accessible without mathematical sophistication
and portray these exiting new fields in an authentic manner would find an audience. Now we know it
did. We know from many reviews and personal letters that the book is used in a wide range of ways:
researchers use it to acquaint themselves, teachers use it in college and university courses, students use
it for background reading, and there is also a substantial audience of lay people who just want to know
what chaos and fractals are about.

Every book that is somewhat technical in nature is likely to have a number of misprints and errors in
its first edition. Some of these were caught and brought to our attention by our readers. One of them,
Hermann Flaschka, deserves to be thanked in particular for his suggestions and improvements.

This second edition has several changes. We have taken out the two appendices from the first edition.
At the time of the first edition Yuval Fishers contribution, which we published as an appendix was
probably the first complete expository account on fractal image compression. Meanwhile, Yuvals book
Fractal Image Compression: Theory and Application appeared and is now the publication to refer to.
Moreover, we have taken out the sections at the end of each chapter, which were devoted to a focussed
computer program in BASIC, which highlighted a fundamental construction in that respective chapter.
Instead we direct our readers to our web-site

http://www.cevis.uni-bremen.de/fractals/
where we provide 10 interactive JAVA-applets.

We also like to express our sincere gratitude to the people at Springer-Verlag, New York, who made
this whole project such a wonderful experience for us.

Heinz-Otto Peitgen, Hartmut Jiirgens, Dietmar Saupe
Bremen and Konstanz, August 2003



Preface of the First Edition

Over the last decade, physicists, biologists, astronomers and economists have created a new way of
understanding the growth of complexity in nature. This new science, called chaos, offers a way of seeing
order and pattern where formerly only the random, erratic, the unpredictable — in short, the chaotic —
had been observed.

James Gleick'

This book is written for everyone who, even without much knowledge of technical mathematics,
wants to know the details of chaos theory and fractal geometry. This is not a textbook in the usual sense
of the word, nor is it written in a ‘popular scientific’ style. Rather, it has been our desire to give the
reader a broad view of the underlying notions behind fractals, chaos and dynamics. In addition, we have
wanted to show how fractals and chaos relate to each other and to many other aspects of mathematics as
well as to natural phenomena. A third motif in the book is the inherent visual and imaginative beauty in
the structures and shapes of fractals and chaos.

For almost ten years now mathematics and the natural sciences have been riding a wave which, in its
power, creativity and expanse, has become an interdisciplinary experience of the first order. For some
time now this wave has also been touching distant shores far beyond the sciences. Never before have
mathematical insights — usually seen as dry and dusty — found such rapid acceptance and generated so
much excitement in the public mind. Fractals and chaos have literally captured the attention, enthusiasm
and interest of a world-wide public. To the casual observer, the color of their essential structures and their
beauty and geometric form captivate the visual senses as few other things they have ever experienced in
mathematics. To the student, they bring mathematics out of the realm of ancient history into the twenty-
first century. And to the scientist, fractals and chaos offer arich environment for exploring and modelling
the complexity of nature.

But what are the reasons for this fascination? First of all, this young area of research has created
pictures of such power and singularity that a collection of them, for example, has proven to be one of the
most successful world-wide series of exhibitions ever sponsored by the Goethe-Institute.> More impor-
tant, however, is the fact that chaos theory and fractal geometry have corrected an outmoded conception
of the world.

The magnificent successes in the fields of the natural sciences and technology had, for many, fed
the illusion that the world on the whole functioned like a huge clockwork mechanism, whose laws were
only waiting to be deciphered step by step. Once the laws were known, it was believed, the evolution
or development of things could — at least in principle — be ever more accurately predicted. Captivated
by the breathtaking advances in the development of computer technology and its promises of a greater
command of information, many have put increasing hope in these machines.

But today it is exactly those at the active core of modern science who are proclaiming that this hope
is unjustified; the ability to see ever more accurately into future developments is unattainable. One

7. Gleick, Chaos - Making a New Science, Viking, New York, 1987.

2 Alone at the venerable London Museum of Science, the exhibition Frontiers of Chaos: Images of Complex Dynamical Systems
by H. Jiirgens, H.-O. Peitgen, M. Priifer, P. H. Richter and D. Saupe attracted more than 140,000 visitors. Since 1985 this exhibition
has travelled to more than 100 cities in more than 30 countries on all five continents.
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conclusion that can be drawn from the new theories, which are admittedly still young, is that stricter
determinism and apparently accidental development are not mutually exclusive, but rather that their
coexistence is more the rule in nature. Chaos theory and fractal geometry address this issue. When we
examine the development of a process over a period of time, we speak in terms used in chaos theory.
When we are more interested in the structural forms which a chaotic process leaves in its wake, then
we use the terminology of fractal geometry, which is really the geometry whose structures are what give
order to chaos.

In some sense, fractal geometry is first and foremost a new ‘language’ used to describe, model and
analyze the complex forms found in nature. But while the elements of the ‘traditional language’ — the
familiar Euclidean geometry — are basic visible forms such as lines, circles and spheres, those of the
new language do not lend themselves to direct observation. They are, namely, algorithms, which can
be transformed into shapes and structures only with the help of computers. In addition, the supply of
these algorithmic elements is inexhaustibly large; and they are capable of providing us with a powerful
descriptive tool. Once this new language has been mastered, we can describe the form of a cloud as
easily and precisely as an architect can describe a house using the language of traditional geometry.

The correlation of chaos and geometry is anything but coincidental. Rather, it is a witness to their
deep kinship. This kinship can best be seen in the Mandelbrot set, a mathematical object discovered by
Benoit Mandelbrot in 1980. It has been described by some scientists as the most complex — and possibly
the most beautiful — object ever seen in mathematics. Its most fascinating characteristic, however, has
only just recently been discovered: namely, that it can be interpreted as an illustrated encyclopedia of an
infinite number of algorithms. It is a fantastically efficiently organized storehouse of images, and as such
it is the example par excellence of order in chaos.

Fractals and modern chaos theory are also linked by the fact that many of the contemporary pace-
setting discoveries in their fields were only possible using computers. From the perspective of our in-
herited understanding of mathematics, this is a challenge which is felt by some to be a powerful renewal
and liberation and by others to be a degeneration. However this dispute over the ‘right’ mathematics is
decided, it is already clear that the history of the sciences has been enriched by an indispensable chapter.
Only superficially is the issue one of beautiful pictures or of perils of deterministic laws. In essence,
chaos theory and fractal geometry radically question our understanding of equilibria — and therefore of
harmony and order — in nature as well as in other contexts. They offer a new holistic and integral model
which can encompass a part of the true complexity of nature for the first time. It is highly probable that
the new methods and terminologies will allow us, for example, a much more adequate understanding of
ecology and climatic developments, and thus they could contribute to our more effectively tackling our
gigantic global problems.

We have worked hard in trying to reveal the elements of fractals, chaos and dynamics in a non-
threatening fashion. Each chapter can stand on its own and can be read independently from the others.
Each chapter is centered around a running ‘story’ typeset in Times and printed toward the outer mar-
gins. More technical discussions, typeset in Helvetica and printed toward the inner margins, have been
included to occasionally enrich the discussion by providing deeper analyses for those who may desire
them and those who are prepared to work themselves through some mathematical notations. At the end
of each chapter we offer a short BASIC program, the Program of the Chapter, which is designed to
highlight one of the most prominent experiments of the respective chapter.

This book is a close relative of the two-volume set Fractals for the Classroom which was published
by Springer-Verlag and the National Council of Teachers of Mathematics in 1991 and 1992. While
those books were originally written for an audience which is involved with the teaching or learning of
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mathematics, this book is intended for a much larger readership. It combines most parts of the afore-
mentioned books with many extensions and two important appendices.

The first appendix, written by Yuval Fisher, deals with aspects of image compression using funda-
mental ideas from fractal geometry. Such applications have been discussed for about five years and
hopes of new breakthrough technologies have risen very high through the work and announcements of
the group around Michael F. Barnsley. Since Barnsley has kept his work absolutely secret we still don’t
know what is possible and what is not. But Fisher’s contribution allows us to make a fair guess. Anybody
who is interested in the perspectives of image compression through fractals will appreciate this appendix.

The second appendix is written by Carl J. G. Evertsz and Benoit B. Mandelbrot and deals with
multifractal measures, which is one of the hottest subjects in the current scientific discussion of fractal
geometry. Usually we think of fractals as objects having some kind of self-similarity. The discussion of
multifractal measures extends this concept to the distributions of quantities (for example, the amount of
ground water found at a certain location under the surface). Furthermore, it overcomes some shortcom-
ings of the fractal dimension when used as a tool for measurement in science.

Even with these two important contributions there remain many holes in this book. However, fortu-
nately there are exceptional books already in print that can close these gaps. We list the following only
as examples: For portraits of the personalities in the field and the genesis of the subject matter, as well as
the scientific background and interrelationships, there are Chaos — Making a New Science,” by James
Gleick, and Does God Play Dice?,* by Ian Stewart. For the reader who is more interested in a system-
atic mathematical exposition or who is ready to advance into the depths, there are the following titles:
An Introduction to Chaotic Dynamical Systems® and Chaos, Fractals, and Dynamics,® both by Robert
L. Devaney, and Fractals Everywhere,’ by Michael F. Barnsley. An adequate technical discussion of
fractal dimension can be found in the two exceptional texts, Measure, Topology and Fractal Geometry,8
by Gerald A. Edgar, and Fractal Geometry,’ by Kenneth Falconer. Readers more interested in fractals
in physics will appreciate Fractals,'” by Jens Feder, while readers who look for fractals in chemistry
should not miss The Fractal Approach to Heterogeneous Chemistry," by David Avnir. And last but not
least, there is the book of books about fractal geometry written by Benoit B. Mandelbrot, The Fractal
Geometry of Nature."

We owe our gratitude to many who have assisted us during the writing of this book. Our students
Torsten Cordes and Lutz Voigt have produced most of the graphics very skillfully and with unlimited
patience. They were joined by two more of our students, Ehler Lange and Wayne Tvedt, during part of
the preparation time. Douglas Sperry has read our text very carefully at several stages of its evolution
and, in addition to helping to get our English de-Germanized, has served in the broader capacity of copy
editor. Ernst Gucker, who is working on the German edition, suggested many improvements. Friedrich
von Haeseler, Guentcho Skordev, Heinrich Niederhausen and Ulrich Krause have read several chapters
and provided valuable suggestions. We also thank Eugen Allgower, Alexander N. Charkovsky, Mitchell
J. Feigenbaum, Przemyslaw Prusinkiewicz, and Richard Voss for reading parts of the original manuscript

Viking, 1987.

4Penguin Books, 1989.

3Second Edition, Addison Wesley, 1989.
®Addison Wesley, 1990.

" Academic Press, 1989.
¥Springer-Verlag,1990

°John Wiley and Sons, 1990.

Plenum, 1988

"'wiley, 1989

">W.H. Freeman, 1982.
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and giving valuable advice. Gisela Griindl has helped us with selecting and organizing third-party art-
work. Claus Hosselbarth did an excellent job in designing the cover. Evan M. Maletsky, Terence H.
Perciante and Lee E. Yunker read parts of our early manuscripts and gave crucial advice concerning the
design of the book. Finally, we are most grateful to Yuval Fischer, Carl J. G. Evertsz and Benoit B.
Mandelbrot for contributing the appendices to our book, and to Mitchell Feigenbaum for his remarkable
foreword.

The entire book has been produced using the TgX and I#TEX typesetting systems where all figures
(except for the half-tone and color images) were integrated in the computer files. Even though it took
countless hours of sometimes painful experimentation setting up the necessary macros it must be ac-
knowledged that this approach immensely helped to streamline the writing, editing and printing.

Finally, we have been very pleased with the excellent cooperation of Springer-Verlag in New York.

Heinz-Otto Peitgen, Hartmut Jiirgens, Dietmar Saupe
Bremen, May 1992
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Foreword

Mitchell J. Feigenbaum'

The study of chaos is a part of a larger
program of study of so-called ‘strongly’
nonlinear systems. Within the context of
physics, the exemplar of such a system is
a fluid in turbulent motion. If chaos is not
exactly the study of fluid turbulence, nev-
ertheless, the image of turbulent, erratic
motion serves as a powerful icon to re-
mind a physicist of the sorts of problems
he would ultimately like to comprehend.
As for all good icons, while a vague
impression of what one wants to know
is sensibly clear, a precise delineation
of many of these quests is not so readily
available. In a state of ignorance, the
most poignantly insightful questions are
not yet ripe for formulation. Of course,
this comment remains true despite the fact that for technical exigencies, there
are definite questions that one desperately wants the answers to.

Fluid turbulence indeed presents us with highly erratic and only partially
predictable phenomena. Historically, since Laplace say, physical scientists
have turned to the statistical methods when presented with problems that con-
cern the mutual behaviors of innumerably large numbers of pieces. If for no
other reason, one does so to reduce the number of details that one must mea-
sure, specify, compute, whatever. Thus, it is easier to say that 43% of the
population voted for X than to offer the roster of the behavior of each of mil-
lions of voters. Just so, it is easier to specify how many gas molecules there
are in an easily measurable volume than to write out the list of where and
how fast each one is. This idea is altogether reasonable if not even the most
desirable one. However, if one is to work out a theory of these things, so that
a prediction might be rendered, then as in all matters of statistics, one must

"Mitchell J. Feigenbaum, Toyota Professor, The Rockefeller University, New York.
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determine a so-called distribution function. This means a theoretical predic-
tion of just how often out of uncountably many elections, etc., it is expected
that each value of this average voter response occurs. For the voter question
and the density of a gas question, there is just one number to determine. For
the problem of fluid turbulence, even in this statistical quest, one must ask a
much richer question: For example, how often do we see eddies of each size
rotating at such and such a rate?

For the problem of voters I don’t have any serious idea of how to theo-
retically determine this requisite distribution; nor with good frequency do the
polls succeed in measuring it. After all, it might not exist in the sense that
it rapidly and significantly varies from day to day. However, since physicists
have long known quite reliably the laws of fluids — that is, the rules that al-
low you to deduce what each bit of the fluid will do later if you know what
they all do now, there might be a way of doing so. Indeed, the main idea of
the branch of physics called statistical mechanics is rooted in the belief that
one knows in advance how to do this. The idea is, basically, that each possible
detailed configuration occurs with equal likelihood. Indeed, the word ‘chaos’
first entered physics in Maxwell’s phrase ‘state of molecular chaos’ in the
last century to loosely mean this. Statistical mechanics — especially in its
quantum-mechanical form — works very well indeed, and provides us with
some of our most wonderful knowledge. However, altogether regrettably, in
the context of fluid turbulence, it has persisted for the last century to roundly
fail. It turns out to be a question of truly deducing from the known laws of
microscopic motion of fluids what this rule of distribution must be, because
the easy guess of ‘everything is as random as possibly’ simply doesn’t work.
And when that guess doesn’t work, there exists as of today no methodology
to provide it. Moreover, if in our present state of knowledge we should be
forced to appraise the situation, then we would guess that an extraordinarily
complicated distribution is required to account for the phenomena: Should
it be fractal in nature, then fractal of the most perverse sort. And the worst
part is that we really don’t possess the mathematical power to generally say
what class of object it might be sought among. Remember, we’re not looking
for a perfectly good quick-fix: If we are serious in seeking understanding of
the analytical description of Nature, then we demand much more. When the
subject of chaos and a part of that larger program called strongly nonlinear
physics shall have been deemed penetrated, we shall know thoroughly how
to respond to such questions, and readily image intuitively what the answers
look like. To date, we can now compellingly do so for much simpler problems
— and have come to possess that capability only within the last decades.

As I 'have said earlier, I don’t necessarily care about turbulence. Rather, it
serves as an icon representing a genre of problems. I was trained as a theo-
retical high-energy physicist, and grew deeply troubled that no methods save
for that of successive improvements, so-called perturbation methods, existed.
Apart from the brilliant effort of Ken Wilson, in his version of the renor-
malization group, that circumstance is unchanged. Knowing the microscopic

The Laws of Fluids
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Nonlinearity

Perturbation Method

Geometry of Chaos

laws of how things move — such schemes are called ‘dynamical systems’ —
still leaves us almost altogether in the dark as to their larger consequences.
Are the theories no good, or is it that we just can’t determine what they con-
tain? At the moment it’s impossible to say. From high-energy physics to fluid
physics and astrophysics our inherited ways of thinking mathematically sim-
ply fail to serve us. In a way, if perhaps modest, the questions tackled in the
effort to comprehend what is now called chaos have faced these questions of
methodology head on.

Let me now backtrack and discuss nonlinearity. This means first linearity.
Linearity means that the rule that determines what a piece of a system is
going to do next is not influenced by what it is doing now. More precisely,
this is intended in a differential or incremental sense: For a linear spring, the
increase of its tension is proportional to the increment whereby it is stretched,
with the ratio of these increments exactly independent of how much it has
already been stretched. Such a spring can be stretched arbitrarily far, and in
particular will never snap or break. Accordingly, no real spring is linear.

The mathematics of linear objects is particularly felicitous. As it happens,
linear objects enjoy an identical, simple geometry. The simplicity of this ge-
ometry always allows a relatively easy mental image to capture the essence of
a problem, with the technicality, growing with the number of parts, basically
a detail, until the parts become infinite in number, although often then too,
precise answers can be readily determined.

The historical prejudice against nonlinear problems is that no so simple
nor universal geometry usually exists. Until recently, the general scientific
perception was that a certain nonlinear equation characterized some particular
problem. If the specific problem was sufficiently interesting or demanding of
resolution, then perhaps particular methods could be created for it. But it
was well understood that the travail would probably be of no avail in other
contexts.

Indeed, only one method was well understood and universally learned,
the perturbation method. If a linear problem was viewed through distorting
lenses, it qualitatively would do the same thing: If it repeated every five sec-
onds it would persist to appear so seen through the lenses. Nevertheless, it
would now no longer appear to exhibit equal tension increments for the equal
elongations. After all, the tension is measurably unchanged by distorting
lenses, whereas all spatial measurements are. That is, the device of distorting
lenses turns a linear problem into a nonlinear one. The method of perturba-
tion basically works only for nonlinear problems that are distorted versions
of linear ones. And so, this uniquely well-learned method is of no avail in
matters that aren’t merely distortions of linear ones.

Chaos is absent in distorted linear problems. Chaos and other such phe-
nomena that are qualitatively absent in linear problems are what we call
strongly nonlinear phenomena. It is this failure to subscribe to the spectrum
of configurations allowed by distorting a simple geometry that renders these
problems anywhere from hard in the extreme to impenetrable. How does one
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ever start to intelligently describe an awkward new geometry? This question
is for example intended to be loosely akin to the question of how one should
describe the geometry of the surface of the Earth, not through our abstracted
perceptual apparatus that allows us to visualize it immersed within a vastly
larger three-dimensional setting, but rather intrinsically, forbidding this use of
imagination. The solution of this question, first by Gauss and then extended
to arbitrary dimensions by Riemann is, as many of you must know, at the
center of the way of thinking of Einstein’s General Theory of Relativity, our
theory of gravity. What is to be the geometry of the object that describes the
turbulent fluid’s distribution function? Are there intrinsic geometries that de-
scribe various chaotic motions, that serve as a unifying way of viewing these
disparate nonlinear problems, as kindred? I ask the question because I know
the answer to be affirmative in certain broad circumstances. The moment this
is accepted, then strongly nonlinear problems appear no longer as each one its
own case, but rather coordinated and suitable for theorizing upon as their own
abstract entity. This promotion from the detailed specific to the membership
in a significant general class is one of the triumphs of the study of chaos in
the last decade or two.

An even stronger notion than this generality of shared qualitative geom-
etry is the notion of universality, which means no less than that this shared
geometry is not only one of a qualitative similarity but also one of true quan-
titative identicality. After what has been, if you will, a long preamble, the
fact that strongly nonlinear problems, with surprising frequency, can share a
quantitatively identical geometry is what I shall pursue for the rest of this dis-
cussion, and constitutes what is termed universality in the transition to chaos.

In a qualitative way of thinking, universality can be seen to be not so sur-
prising. There are two arguments to support this. The first part has simply
to do with nonlinearity. Just as a linear object has a constant coefficient of
proportionality between, for example, its tension and its expansion, a similar,
but nonlinear version, has an effective coefficient dependent upon its exten-
sion. So, consider two completely different nonlinear systems. By adjusting
things correctly it is not inconceivable that the effective coefficients of each
part of each of the two systems could be set the same so that then their behav-
iors could, at least initially, be identical. That is, by setting some numerical
constants (properties, so to speak, that specify the environment, mathemati-
cally called ‘parameters’) and the actual behaviors of these two systems, it
is possible that they can do the identical thing. For a linear problem this is
ostensibly true: For systems with the same number of parts and mutual con-
nections, a freedom to adjust all the parameters allows one to be adjusted to
be identical (truly) to the other. But, for many pieces, this is many adjust-
ments. For a nonlinear system, adjusting a small number of parameters can
be compensated, in this quest for identical behavior, by an adjustment of the
momentary positions of its pieces. But then it must be that not all motions
can be so duplicated between systems.

Thus, the first part of the argument is that nonlinearity confers a certain

Universality
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The Monadology of
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flexibility upon the adaptability of an object to desirable behavior. Neverthe-
less, should the precise adjustment of too many specific and subtle details be
required in order to achieve a certain universal behavior, then the idea would
be pedantic at best.

However, there is a second more potent argument, a paraphrasing of Leib-
niz in ‘The Monadology’ which can render this first argument potent. Let
us contemplate that the motion we intend to determine to be universal over
nonlinear systems has arisen by the successive imposition of more and more
qualitative constraints. Should this growingly large host of impositions prove
to be generally amenable to such systems (this is the hard and a priori neither
obvious nor reasonable part of the discussion), then we shall ultimately dis-
cover these disparate systems to all be identically constrained by an infinite
number of qualitative and, if you will, self-consistent, requirements. Now,
following Leibniz, we ask, ‘In how many precise, or quantitative, ways can
this situation be tenable?” And we respond, following Leibniz, by asserting
in precisely one possible uniquely determined way.

This is the best verbalization I know for explaining why such a universal
behavior is possible. Both mathematics and physical experimentation con-
firm its rectitude perfectly. But it is perhaps difficult to have you realize how
extraordinary this result appeared given the backdrop of physical and mathe-
matical thinking in 1976 when it first appeared together with its full concep-
tual analysis. As anecdotal evidence, I had been directed to expound these
results to one of the great mathematicians, who is renowned for his results on
dynamical systems. I spoke with him at the very end of 1976. I kept trying
to tell him that there was a complete quantitative universality to these phe-
nomena, and he equally often understood me to have duplicated some known
qualitative results. Finally, he said “You mean to tell me these are metrical re-
sults?” (Metrical is a mathematical code word that means quantitative.) And
I said “Yes.” ‘Well, then you're wrong!’ he asserted, and turned his back on
me to terminate the conversation.

Anecdote aside, what is remarkable about all this? First of all, an easy
piece of methodological insight. As practitioners of a truly analytical sci-
ence, physicists were trained to know that qualitative explanations are in-
sufficient to base truth upon. Quite to the contrary, it is regarded to be at
the heart of the ‘scientific method’ that ever more precise measurements will
discriminate between rival quantitative theories to ultimately select out one
as the correct encoding of the qualitative content. (Thus, think of geocen-
tric versus heliocentric planetary theories, both qualitatively explaining the
retrograde motions of the planets.) Here the method is turned on its head:
Qualitatively similar phenomena, independent of any other ideational input,
must ineluctably lead to the measurably identical quantitative result. Whence
the total phenomenological support for this mighty ‘scientific method?’

Second, a new principle of ‘economy’ immediately emerges. Why put out
Herculean efforts to calculate the consequences of some particular and highly
difficultencoding of physical laws, when anything else — however trivial —
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possessing the same qualitative properties will yield exactly the same predic-
tions and results? And this is all the more satisfying because one doesn’t even
know the exact equations that describe various of these phenomena, fluid phe-
nomena in particular. And that is because these phenomena have nothing to
do, whatsoever, with the detailed, particular, microscopic laws that happen to
be at play. This aspect, that is, of substituting easy problems for hard ones
with no penalty, has been, as a way of thinking and performing research, the
prominent fruit of the recognition of universality. When can it work? Well, in
complicated interactions of scores of chemical species, in laser phenomena,
in solid state phenomena, in, at least partially, biological rhythmic phenomena
such as apneas and arhythmias, in fluids and, of course, in mathematics.

But now, as I move towards the end of this claim for virtue, let me discuss
‘chaos’ a bit more per se and revisit my opening ‘preamble.” Much of chaos
as a science is connected with the notion of ‘sensitive dependence on initial
conditions.” Technically, scientists term as ‘chaotic’ those nonrandom com-
plicated motions that exhibit a very rapid growth of errors that, despite perfect
determinism, inhibits any pragmatic ability to render accurate long-term pre-
diction. While nomenclaturally speaking this is perforce true, I personally am
not very intrigued or concerned with this facet of my subject. I've never told
you what the ‘transition to chaos’ means, but you can readily guess from the
verbiage that it’s something that starts off not being chaotic, ends up being so,
and hence somehow passes from one to the next. The most important fact is
that there is a discernibly precise ‘moment’, with a corresponding behavior,
which is neither chaotic nor nonchaotic, at which this transition occurs. Yes,
errors do grow, but only in a marginally predictable, rather than in an unpre-
dictable, fashion. In this state of marginal predictability inheres embryoni-
cally all the seeds of the chaotic behavior to come. That is, this transitional
point, the legitimate child of universality, without full-fledged sensitive de-
pendence upon initial conditions, knows fully how to dictate to its progeny in
turn how this latter phenomenon must unfold. For a certain range of possible
behaviors of strongly nonlinear systems — specifically, this range surround-
ing the transition to chaos — the information obtained just at the transition
point fully organizes the spectrum of behaviors that these chaotic systems can
exhibit.

Now what is it that turns out to be universal? The answer, mostly, is
a precise quantitative determination of the intrinsic geometry of the space
upon which this marginal chaotic motion lives together with the full knowl-
edge of how in the course of time this space is explored. Indeed, it was
from the analysis of universality at the transition to chaos that we have come
to recognize the precise mathematical object that fully furnishes the intrinsic
geometry of these sort of spaces. This object, a so-called scaling function,
together with the mathematically precise delineation of universality, consti-
tutes one of the major results of the study of chaos. Granted the broad range
of objects that can be termed fractal, these geometries are fractal. But not
the heuristic sort of ‘dragons’, ‘carpets’, ‘snowflakes’, etc. Rather, these are

The Essence of Chaos

The Geometry of
Chaos
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structures which are elaborated upon at smaller and smaller scales differently
at each point of the object, and so are infinitely more complicated than the
above heuristic objects. There is, in more than just a way of speaking, a ge-
ometry of these dynamically created objects, and that geometry requires a
scaling function to fully elucidate it. Many of you are aware of the existence
of a certain object called the ‘Mandelbrot set’. Virtually none of you, though,
even having simulated it on your own computers, are aware that its ubiqui-
tous existence in those sufficiently smooth contexts in which it appears, is the
consequence of universality at the transition of chaos. Every one of its details
is implicit in those embryonic seeds I have mentioned before.

Thus, the most elementary consequence of this deep universal geome-
try is that, in gross organization we notice a set of discs — the largest the
main cardioid — one abutting upon the next and of rapidly diminishing radii.
How rapidly do they diminish in size? In fact, each one is 6 times smaller
that its predecessor, with §, a universal constant, approximately equal to
4.6692016..., the best known of the constants that characterize universal-
ity at the transition of chaos.

I have now come around full circle to my introductory comments. We
have, in the last decade, succeeded in coming to know many of the correct
ideas and their mathematical language in regard to the question, “What is the
nature of the objects upon which we see our statistical distributions?’ ‘Di-
mension’ is a mathematical word possessing a quite broad range of technical
connotations. Thus, the theory of universality is erected in a very low (that is,
one- or two-) dimensional setting. However the information discussed is of
an infinite-dimensional character. The physical phenomena exhibiting these
behaviors can appear, for example, in the physical three-dimensional space
of human experience, with the number of interacting, cooperating pieces that
comprise the system investigated — also a statement of its dimension — ei-
ther merely a few or an infinitude. Nevertheless, our understanding to date
is of what must be admitted to be a relatively simple set of phenomena —
relatively simple in comparison to the swirling and shattering complexity of
fluid motions at the foot of a waterfall, phenomena that loom large and deeply
impress upon us how much lies undiscovered before us.
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Causality Principle, Deterministic Laws
and Chaos

Prediction is difficult, especially of the future.
Niels Bohr

For many, chaos theory already belongs to the greatest achievements in
the natural sciences in this century. Indeed, it can be claimed that very few
developments in natural science have awakened so much public interest. Here
and there, we even hear of changing images of reality or of a revolution in the
natural sciences.

Critics of chaos theory have been asking whether this popularity could
perhaps only have something to do with the clever choice of catchy terms
or the very human need for a theoretical explanation of chaos. Some have
prophesized for it exactly the same quick and pathetic death as that of the
catastrophe theory, which excited so much attention in the sciences at the end
of the 1960’s and then suddenly fell from grace even though its mathematical
core is counted as one of the most beautiful constructions and creations. The
causes of this demise were diverse and did not only have scientific roots. It
can certainly be said that catastrophe theory was severely damaged by the
almost messianic claims of some apologists.

Chaos theory, too, is occasionally in danger of being overtaxed by being
associated with everything that can be even superficially related to the concept
of chaos. Unfortunately, a sometimes extravagant popularization through the
media is also contributing to this danger; but at the same time this populariza-
tion is also an important opportunity to free areas of mathematics from their
intellectual ghetto and to show that mathematics is as alive and important as
ever.

But what is it that makes chaos theory so fascinating? What do the sup-
posed changes in the image of reality consist of? To these subjects we would
like to pose, and to attempt to answer, some questions regarding the philoso-
phy of nature.
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The main maxim of science is its ability to relate cause and effect. On
the basis of the laws of gravitation, for example, astronomical events such as
eclipses and the appearances of comets can be predicted thousands of years
in advance. Other natural phenomena, however, appear to be much more
difficult to predict. Although the movements of the atmosphere, for example,
obey the laws of physics just as much as the movements of the planets do,
weather prediction is still rather problematic.

Cause and Effect

Tides Versus Weather lan Stewart in his article Chaos: Does God Play Dice?, Encyclopae-
dia Britannica, 1990 Yearbook of Science and the Future, makes the

following striking comparison:

“Scientists can predict the tides, so why do they have so much
trouble predicting the weather? Accurate tables of the time of high or
low tide can be worked out months or even years ahead. Weather
forecasts often go wrong within a few days, sometimes even within
a few hours. People are so accustomed to this difference that they
are not in the least surprised when the promised heat wave turns
out to be a blizzard. In contrast, if the tide table predicted a low
tide but the beach was under water, there would probably be a riot.
Of course the two systems are different. The weather is extremely
complex; it involves dozens of such quantities as temperature, air
pressure, humidity, wind speed, and cloud cover. Tides are much
simpler. Or are they? Tides are perceived to be simpler because
they can be easily predicted. In reality, the system that gives rise to
tides involves just as many variables — the shape of the coastline,
the temperature of the sea, its salinity, its pressure, the waves on its
surface, the position of the Sun and Moon, and so on — as that which
gives rise to weather. Somehow, however, those variables interact in
a regular and predictable fashion. The tides are a phenomenon of
order. Weather, on the other hand, is not. There the variables interact
in an irregular and unpredictable way. Weather is, in a word, chaotic.”

We speak of the unpredictable aspects of weather just as if we were talking
about rolling dice or letting an air balloon loose to observe its erratic path as
the air is ejected. Since there is no clear relation between cause and effect,
such phenomena are said to have random elements. Yet there was little reason
to doubt that precise predictability could, in principle, be achieved. It was
assumed that it was only necessary to gather and process greater quantities of
more precise information (e.g., through the use of denser networks of weather
stations and more powerful computers dedicated solely to weather analysis).
Some of the first conclusions of chaos theory, however, have recently altered
this viewpoint. Simple deterministic systems with only a few elements can
generate random behavior, and that randomness is fundamental; gathering
more information does not make it disappear. This fundamental randomness
has come to be called chaos.
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Deterministic Chaos

An apparent paradox is that chaos is deterministic, generated by fixed
rules which do not themselves involve any elements of change. We even
speak of deterministic chaos. In principle, the future is completely determined
by the past; but in practice small uncertainties, much like minute errors of
measurement which enter into calculations, are amplified, with the effect that
even though the behavior is predictable in the short term, it is unpredictable
over the long term.

The discovery of such behavior is one of the important achievements of
chaos theory. Another is the methodologies which have been designed for
a precise scientific evaluation of the presence of chaotic behavior in mathe-
matical models as well as in real phenomena. Using these methodologies,
it is now possible, in principle, to estimate the ‘predictability horizon’ of a
system. This is the mathematical, physical, or time parameter limit within
which predictability is ideally possible and beyond which we will never be
able to predict with certainty. It has been established, for example, that the
predictability horizon in weather forecasting is not more than about two or
three weeks. This means that no matter how many more weather stations are
included in the observation, no matter how much more accurately weather
data are collected and analyzed, we will never be able to predict the weather
with any degree of numerical accuracy beyond this horizon of time.

But before we go into an introductory discussion of what chaos theory is
trying to accomplish, let us look at some historical aspects of the field. If we
look at the development of the sciences on a time-scale on which the efforts
of our forbears are visible, we will observe indications of an apparent reca-
pitulation in the present day, even if at a different level. To people during
the age of early human history, natural events must have seemed largely to be
pure chaos. At first very slowly, then faster and faster, the natural sciences
developed (i.e., over the course of thousands of years, the area where chaos
reigned seemed to become smaller and smaller). For more and more phe-
nomena, their governing laws were wrung from Nature and their rules were
recognized. Simultaneously, mathematics developed hand in hand with the
natural sciences, and thus an understanding of the nature of a phenomenon
soon came to also include the discovery of an appropriate mathematization of
it. In this way, there was continuous nourishment for the illusion that it was
only a matter of time, along with the necessary effort and means, before chaos
would be completely banned from human experience.

A landmark accomplishment of tremendous, accelerating effect was made
about three hundred years ago with the development of calculus by Sir Isaac
Newton (1643-1727) and Gottfried Wilhelm Freiherr von Leibniz (1646-
1716). Through the universal mathematical ideas of calculus, the basis was
provided with which to apparently successfully model the laws of the move-
ments of planets with as much detail as that in the development of populations,
the spread of sound through gases, the conduction of heat in media, the inter-
action of magnetism and electricity, or even the course of weather events. Also
maturing during that time was the secret belief that the terms determinism and
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predictability were equivalent.

For the era of determinism, which was mathematically grounded in cal-
culus, the ‘Laplace demon’ became the symbol. “If we can imagine a con-
sciousness great enough to know the exact locations and velocities of all the
objects in the universe at the present instant, as well as all forces, then there
could be no secrets from this consciousness. It could calculate anything about
the past or future from the laws of cause and effect.””

In its core, the deterministic credo means that the universe is comparable
to the ordered running of a tremendously precise clock, in which the present
state of things is, on the one hand, simply the consequence of its prior state,
and, on the other hand, the cause of its future state. Present, past and future
are bound together by causal relationships; and according to the views of the
determinists, the problem of an exact prognosis is only a matter of the difficulty
of recording all the relevant data. The deterministic credo was characteristic
of the Newtonian era, which for the natural sciences came to an end, at the
latest, through the insights of Werner Heisenberg in the 1927 proclamation
of his uncertainty principle,’ but which for other sciences is still considered
valid.

Heisenberg wrote: “In the strict formulation of the causality law — ‘When
we know the present precisely, we can calculate the future’ — it is not the
final clause, but rather the premise, that is false. We cannot know the present
in all its determining details.

“Therefore, all perception is a selection from an abundance of possibilities
and a limitation of future possibilities ...Because all experiments are subject to
the laws of quantum mechanics, and thereby also to the uncertainty principle,
the invalidity of the causality law is definitively established through quantum
mechanics.”

Classical determinism in its fearful strictness had to be given up — a
turning point of enormous importance.

How undiminished the hope in a great victory of determinism still was
at the beginning of this century is impressively illustrated in the 1922 book
by Lewis F. Richardson entitled Weather Prediction by Numerical Process,
in which was written: “After so much hard reasoning, may one play with
a fantasy? Imagine a large hall like a theater, except that the circles and
galleries go right round through the space usually occupied by the stage. The
walls of this chamber are painted to form a map of the globe. The ceiling
represents the north polar regions, England is the gallery, the tropics in the
upper circle, Australia on the dress circle and the Antarctic in the pit. A

*Pierre Simon de Laplace (1749-1829), a Parisian mathematician and astronomer.

The Laplace Demon

Strict Causality

*This is also called the indeterminacy principle and states that the position and velocity of an object cannot, even in theory, be
exactly measured simultaneously. In fact, the very concept of a concurrence of exact position and exact velocity have no meaning in
nature. Ordinary experience, however, provides no evidence of the truth of this principle. It would appear to be easy, for example,
to simultaneously measure the position and the velocity of a car; but this is because for objects of ordinary size, the uncertainties
implied by this principle are too small to be observable. But the principle becomes really significant for subatomic particles such

as electrons.

*Dover Publications, New York, 1965. First published by Cambridge University Press, London, 1922. This book is still

considered one of the most important works on numerical weather forecasting.
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Weak Causality

The Butterfly Effect

myriad of computers’ are at work upon the weather of the part of the map
where each sits, but each computer attends only to one equation or part of
an equation. The work of each region is coordinated by an official of higher
rank. Numerous little ‘night signs’ display the instantaneous values so that
neighboring computers can read them.... From the floor of the pit a tall pillar
rises to half the height of the hall. It carries a large pulpit on its top. In this sits
the man in charge of the whole theater; he is surrounded by several assistants
and messengers. In this respect he is like the conductor of an orchestra in
which the instruments are slide-rules and calculating machines. But instead
of waving a baton he turns a beam of rosy light upon any region that is running
ahead of the rest, and a beam of blue light upon those who are behindhand.”

In his book, Richardson first laid down the basis for numerical weather
forecasting and then reported on his own initial practical experience with
calculation experiments. According to Richardson, the calculations were so
long and complex that only by using a ‘weather forecasting center’ such as
the one he fantasized was forecasting conceivable.

Then about the middle of the 1940’s, the great John von Neumann actually
began to construct the first electronic computer, ENIAC, in order to further
pursue Richardson’s prophetic program, among others. It was soon recog-
nized, however, that Richardson’s only mediocre practical success was not
simply attributable to his equipment’s lack of calculating capacity, but also to
the fact that the space and time increments used in his work had not met a
computational stability criterion (Courant-Friedrichs-Lewy Criterion), which
was only discovered later. With the appropriate corrections, further attempts
were soon under way with progressively bigger and faster computers to make
Richardson’s dream a reality. This development has been uninterrupted since
the 1950’s, and it has bestowed truly gigantic ‘weather theaters’ upon us.

Indeed, the history of numerical weather forecasting illustrates better than
anything else the undiminished belief in a deterministic (viz. predictable)
world; for, in reality, Heisenberg’s uncertainty principle did not at all mean
the end of determinism. It only modified it, because scientists had never really
taken Laplace’s credo so completely seriously — as is usual with creeds. The
most carefully conducted experiment is, after all, never completely isolated
from the influences of the surrounding world, and the state of a system is never
precisely known at any point in time. The absolute mathematical precision
that Laplace presupposed is not physically realizable; minute imprecision is,
as a matter of principle, always present. What scientists actually believed was
this: From approximately the same causes follow approximately the same
effects — in nature as well as in any good experiment. And this is indeed
often the case, especially over short time spans. If this were not so, we would
not be able to ascertain any natural laws, nor could we build any functioning
machines.

But this apparently very plausible assumption is not universally true. And
what is more, it does not do justice to the typical course of natural processes

*Richardson uses the word computer here to mean a person who computes.
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over long periods of time. Around 1960, Ed Lorenz discovered this deficiency
in the models used for numerical weather forecasting; and it was he who
coined the term ‘butterfly effect’. His description of deterministic chaos goes
like this:® Chaos occurs when the error propagation, seen as a signal in a time
process, grows to the same size or scale as the original signal.

Thus, Heisenberg’s response to deterministic thinking was also incom-
plete. He concluded that the strong causality principle is wrong because its
presumptions are erroneous. Lorenz has now shown that the conclusions are
also wrong. Natural laws, and for that matter determinism, do not exclude the
possibility of chaos. In other words, determinism and predictability are not
equivalent. And whatis an even more surprising rinding of recent chaos theory
has been the discovery that these effects are observable in many systems which
are much simpler than the weather. In fact, they can be observed in very simple
feedback systems, even as simple as the quadratic iterator x — ar(l — ).

Moreover, chaos and order (i.e., the causality principle) can be observed
injuxtaposition within the same system. There may be a linear progression of
errors characterizing a deterministic system which is governed by the causality
principle, while (in the same system) there can also be an exponential progres-
sion of errors (i.e., the butterfly effect) indicating that the causality principle
breaks down.

In other words, one of the lessons coming out of chaos theory is that the
validity of the causality principle is narrowed by the uncertainty principle
fromone end as well as by the intrinsic instability properties of the underlying
natural laws from the other end.

%See Peitgen, H.-O. , Jiirgens, H., Saupe, D., and Zahlten, C., Fractals — An Animated Discussion, Video film, Freeman 1990.
Also appeared in German as Fraktale in Filmen und Gesprdchen, Spektrum der Wissenschaften Videothek, Heidelberg, 1990.



Chapter 1

The Backbone of Fractals: Feedback
and the Iterator

Fractals and Dynamic
Processes

The scientist does not study nature because it is useful; he studies it because
he delights in it, and he delights in it because it is beautiful. If nature were
not beautiful, it would not be worth knowing, and if nature were not worth
knowing, life would not be worth living.

Henri Poincaré

When we think about fractals as images, forms or structures we usually
perceive them as static objects. This is a legitimate initial standpoint in many
cases, as for example if we deal with natural structures like the ones in figures
1.1 and 1.2.

But this point of view tells us little about the evolution or generation of a
given structure. Often, as for example in botany, we like to discuss more than
just the complexity of a ripe plant. In fact, any geometric model of a plant
which does not also incorporate its dynamic growth plan for the plant will not
lead very far.

The same is true for mountains, whose geometry is a result of past tectonic
activity as well as erosion processes which still and will forever shape what
we see as a mountain. We can also say the same for the deposit of zinc in an
electrolytic experiment.

In other words, to talk about fractals while ignoring the dynamic processes
which created them would be inadequate. But in accepting this point of
view we seem to enter very difficult waters. What are these processes and
what is the common mathematical thread in them? Aren’t we proposing
that the complexity of forms which we see in nature is a result of equally
complicated processes? This is true in many cases, but at the same time the
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The Backbone of Fractals

long-standing paradigm ‘Complexity of structure is a result of complicated
interwoven processes’ is far from being true in general. Rather, it seems —
and this is one of the major surprising impacts of fractal geometry and chaos
theory — that in the presence of a complex pattern there is a good chance that
a very simple process is responsible for it. In other words, the simplicity of a
process should not mislead us into concluding thatit will be easy to understand
its consequences.

California Oak Tree

California oak tree, Arastradero Pre-
serve, Palo Alto. Photograph by
Michael McGuire.

Figure 1.1

Fern

This fern is from K. Rasbach, Die
Farnpflanzen Zentraleuropas, Ver-
lag Gustav Fischer, Stuttgart, 1968.
Reproduced with kind permission by
the publisher.

Figure 1.2
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1.1 The Principle of Feedback

Iterator, Feedback and
Dynamic Law

The most important example of a simple process with very complicated be-
havior is the process determined by quadratic expressions such as z° + c,
where ¢ is considered to be a fixed constant, or p + rp(1 — p), where r is a
constant. Before we enter an initial discussion of this phenomenon — a more
systematic exploration is offered in chapter 10 — let us identify and discuss
one of the central icons of our presentation.

Feedback processes are fundamental in all exact sciences. In fact, they
were first introduced by Sir Isaac Newton and Gottfried W. Leibniz some 300
years ago in the form of dynamic laws; and it is now standard procedure to
model natural phenomena using such laws. Such laws determine, for example,
the location and velocity of a particle at one time instant from its values at
the preceding instant. The motion of the particle is then understood as the
unfolding of that law. It is not essential whether the process is discrete (i.e.,
it takes place in steps) or continuous. Physicists like to think in terms of
infinitesimal time steps: natura non facit saltus." Biologists, on the other
hand, often prefer to look at the changes from year to year or from generation
to generation.

We will use the terms iterator, feedback and dynamic law synonymously.
Figure 1.3 explains the idea. The same operation is carried out repeatedly, the
output of one iteration being the input for the next one.

The Feedback Machine
The feedback machine with IU =
input unit, OU = output unit,

CU = control unit.

processing unit

feedback line

Figure 1.3

The feedback machine has three storage units (IlU =
OU = output unit, CU = control unit, PU = processing unit), and one

input unit, The Iterator: Principle of

Feedback

processor, all connected by four transmission lines (see figure 1.3).
The whole unit is run by a clock, which monitors the action in each
component and counts cycles. The control unit acts like a gear shift in
an engine. That is, we can shift the iterator into a particular state and
then run the unit. There are preparatory cycles and running cycles,
each of which can be broken down into elementary steps:

Preparatory cycle:

Step 1 : load information into 1U

"Nature does not make radical jumps.
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Step 2: load information into CU
Step 3: transmit the content of CU into PU

Running cycle:

Step 1: transmit content of 1U and load into PU

Step 2: process the input from 1U

Step 3: transmit the result and load into OU

Step 4: transmit the content from OU and load into 1U

To initiate the operation of the machine we run one preparatory cycle.
Then we start the running cycles and execute a certain number of
them, the count of which may depend on observations which we make
by monitoring the actual output. Execution of one running cycle is
sometimes called one iteration.

When werefertoiterations we shouldimagine aproperfeedback machine. What Is a Feedback
The dynamic behavior of such a machine can be controlled by setting certain Machine?
outside parameters, similar to control levers in an engine. We will discuss the
basicprinciplesguidedbythesimpleexampleofvideofeedback, whichin fact
permits real experiments. This particular feedback machine can be built using
particular pieces of equipment. It is a real machine in the original sense of the
word. This case is rather the exception in this book. Here the term ‘feedback
machine’ usually refers to an abstract machine, a‘Gedankenexperiment’. Such
an abstract machine may be put into operation by executing an appropriate
computer program, or by using a pocket calculator or merely paper and pencil
to carry out the given feedback mechanism.

Video Feedback Setup

Figure 1.4
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Video Feedback

Video feedback is a feedback experiment in the traditional sense of the
word. Its basic configuration is probably as old as television. Nevertheless,
the particular video feedback experiment which we will now present is so
dramatic that its potential can excite even professionals from the television
scene.” Figure 1.4 shows the basic setup. A video camera looks at a video
monitor, and whatever it sees in its viewing zone is put onto the monitor.
There are quite a few controls which have an impact on what will be seen
by an outside observer, for example, the various control dials on the monitor
(contrast, brightness, etc.) and video camera (focus, iris aperture, etc.), as well
as the position of the camera with respect to the monitor. Below we collect
some important tips which will help you to make a successful video feedback
experiment yourself.

It is quite obvious how we can imbed the experiment into our logo in figure
1.3 (input unit = camera, processing unit = camera and monitor electronics,
output unit = monitor screen, control unit = focus, brightness, etc.). The
feedback clock runs quite fast, i.e., about 30 cycles per second, or whatever
number of frames per second your TV system generates.’

The experiment should be set up in an almost dark room. The distance Hints for the Video Feedback
between camera and monitor should be such that the mapping ratio is Experiment
approximately 1 : 1. Turn up the contrast dial on the monitor all the way

and turn down the brightness dial considerably. The experiment works

better if the monitor or the camera is put upside down. Moreover,

the tripod should be equipped with a head that allows the camera

to be turned about its long axis, while it faces the monitor. Rotate

the camera some 45° (angle &) out of its vertical position. Connect

the camera with the monitor. Now the basic setup is arranged. The

camera should have a manual iris which is now gradually opened

while the lens is focused on the monitor screen. Depending on the

contrast and brightness setting you may want to light a match in front

of the monitor screen in order to ignite the process.

Dramatic Impact of
Controls

Each of the controls has an impact on the process, some a very dramatic
one. In this regard we can think of our setup as an analog computer with
control dials. For some kinds of controls and variables it is relatively easy
to understand their mechanisms; for others it is hard; and for still others it
is hard as hell. In fact, many of the phenomena which can be observed are
still very poorly understood. The physicist James P. Crutchfield has prob-
ably coritributed most toward a deeper and systematic understanding of the
process.

*It was proposed by Ralph Abraham from the University of California at Santa Cruz in the 1970’s. See R. Abraham, Simulation
of cascades by video feedback, in: “Structural Stability, the Theory of Catastrophes, and Applications in the Sciences”, P. Hilton
(ed.), Lecture Notes in Mathematics vol. 525, 1976, 10-14, Springer-Verlag, Berlin.

*NTSC is typically 30 frames per second at 480 lines per image.

*J. P. Crutchfield, Space-time dynamics in video feedback, Physica 10D (1984) 229-245.
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Monitor Inside Monitor Inside

Effect of long distance between
camera and monitor. Basic setup
and mapping principle (left), real
feedback — monitor inside monitor
(right).

Figure 1.5

Zoom into a Zoom into ...

Effect of short distance between
camera and monitor. Basic setup and
mapping principle (left), real feed- s
back — repeated magnification of :::: [[I]]H
the image of a pencil (right). T

™) [

Figure 1.6

The easiest variable which has a dramatic impact on the process of image
generation is the position of the camera with regard to the monitor. When the
distance from the camera to the monitor is long, the monitor is just a small
part of the viewing field. Consequently, the monitor will be reproduced onto
a small portion of its screen, and this happens again, and again, and again,
ad infinitum. In other words, we see a monitor inside a monitor inside a
monitor, etc. (compare figure 1.5). The effect of the process can be described
as compression, or, dynamically, as a motion to the center of the monitor.
Whatever image is initially on the monitor will be squeezed and put back onto
the monitor, and that image will be squeezed again, and so on. We would say
that the mapping ratio is 1 : m, where m < 1, i.e., something of unit length
1 on the monitor would reduce to something oflength 72 in a single feedback
cycle.
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Figure 1.7 : Some examples of real video feedback. There is a more or less pronounced periodicity in these pictures
which depends on the angle of the video camera. From the upper left to the lower right we can see periods 3,5,5,5,
8,8,11,11,>11.

The monitor-inside-a-monitor effect is known by most people as video
feedback. It is almost always easy to reproduce with any kind of equipment.
But there is much more ‘life’ in this simple system than has been recognized
because it is a little harder to reproduce with some equipment.

Next, let us discuss what will happen at the other extreme end of the
positioning scale — when the distance between the camera and the monitor
is so short that the viewing field of the camera is just a part of the monitor
screen. That part is put back onto the entire screen, and again, and again, ad
infinitum (compare figure 1.6). We would say that the mapping ratio is 1 : m,
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where m > 1,1i.e., something of unit length 1 on the monitor would expand
to something oflength m in a single feedback cycle.

Now the action in the process is best described as expansion or, dynam-
ically, as a motion to the border of the monitor. Whatever image is initially
on the monitor, a small part of it will be expanded to the full screen, and of
that a small part will again be expanded, and so on. Since the TV refreshes its
image about 30 times per second, it is impossible to see the individual steps
in this process. The result of the close camera position can be a rather wild
and almost turbulent motion on the screen.

The more interesting effects occur when the position of the camera with Unchaining the
regard to the monitor is carefully chosen to be such that the mapping ratio is Feedback
nearly 1:1. The effect is increased dramatically if the camera is turned about
its axis, i.e., an image on the monitor is seen by the camera as if rotationally
changed by some angle. Thus it appears on the monitor (mapping ratio 1 : 1) in
essentially the same size but rotated. From this point on, any simple description
of the mechanisms for the wild and beautiful visual effects that can be observed
breaks down. From what has been said so far, we would expect that in the
rotated position we would eventually observejust a sequence of rotated images.
But this prediction is far too simple. All kinds of peculiar effects occur due
to many different characteristics innate to television image production. For
example, the process of scanning the image on the monitor and in the camera
is one of sequentially putting together a series of lines to compose the image.
There is also the memory effect of the phosphorus on the monitor tube. In
addition, there are electronic time chains and their delays in both the monitor
and camera, as well as other factors.

In any event, this extremely simple feedback system demonstrates very
dramatically how complicated structures can be the result of very simple feed-
back. In a way, this is the theme of the book. Our next set of experiments
tries to bring more of a systematic light into this world ofexciting phenomena.
The basic principle is the same as with video feedback: An initial image is
processed and then the resulting image is reprocessed by the same machine
over and over again.
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1.2 The Multiple Reduction Copy Machine

We now turn to a set of experiments which will provide us with a very intuitive
access to the language of fractal geometry. In a sense, it is a continuation of
the video feedback experiment.

First, let us consider a copy machine which is equipped with an image
reduction feature. If we take an image, put it on the machine and push a
button, we obtain a copy of the image. It is, however, reduced uniformly by
say 50%, i.e., by a factor of 1/2. In the language of mathematics we say that
the copy is similar to the original. The process to generate a copy is called a
similarity transformation or similitude. The process just described embedded
into the idea of figure 1.3 constitutes a feedback system® which would be very
easily predictable in its long-run effect: After some ten or so cycles any initial
image would be reduced to just a point. In other words, running the machine

would be a waste of paper (see figure 1.8).

@@83.

Single Reduction Copy
Machine

Iteration by a copy machine with re-
duction applied to a portrait of Carl
Friedrich Gauss (1777-1855).

Figure 1.8

We will now modify this principal setup. Remember, the basic action
of our machine is the reduction of images. Such reductions, of course, are
achieved by a lens system. As a simple modification of a stock copier, let us
imagine that our custom copier has 2, or 3, or 7, or 14 532 231, or whatever
number of reduction lenses. Each of them looks at the image on the copier,
reduces it, and puts the result somewhere on the copy paper. One such design
consists of the choice of the number of lenses, the reduction factors and the
placements of the reduced images. It constitutes a particular feedback system
which we can run to see what happens. We call such a machine a Multiple
Reduction Copy Machine, abbreviated by the letters MRCM.

Figure 1.9 shows a first example of an MRCM which incorporates just
three reduction lenses, each of them reducing by 50%, i.e., by a factor of 1/2.

What will we see emerging in the sequence of iterations as we run the
feedback system? Will we see an arrangement of a smaller and smaller com-
posite of images developing toward a point? Figure 1.10 gives the surprising

>Try to identify input, processing and output unit.



24 1 The Backbone of Fractals

Multiple Reduction Copy [
Machine (MRCM) |

The Multiple Reduction Copy Ma-
chine (MRCM): the processing unit
is equipped with a three-lens system.

3 - lens system
copying machine

Figure 1.9

Rectangle in MRCM

Starting with a rectangle the itera-
tion leads to the Sierpinski gasket.
Shown are the first five steps and
the result after some more iterations
(lower right).

Figure 1.10

answer, the consequences of which could potentially revolutionize almost ev-
erything we have thought about images in a technical sense. Let us start with a
rectangle as an initial testimage. We putit onto the multiple copier, obtaining
three reduced copies which we color according to the respective lens system
from which each copy is produced.

Then, indeed, we see 3 x 3 = 9 smaller copies, and then 3 x 9 = 27 A First Hieroglyph:
even smaller copies, then 81, 243, 729, etc., copies which rapidly decrease  The Sierpinski Gasket
in size, but the resulting compound images do not reduce to a point at all.

Rather, they transform into a perfect Sierpinski gasket, which we will use as a
major example exhibiting important aspects of fractals in general. Using the
imagery of a language paradigm, we have just introduced a first hieroglyph
in our new fractal dialect. From what we have said so far, it is clear that this
basic principle will generate an infinite variety of images. All we have to do
is convert the copier into one consisting of 4, or 5, or any other number of lens
systems, or with different reduction factors. We will be going into this matter
in more detail in chapters 5 and 6, but there are two major surprises which are
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Figure 1.11

not immediately apparent and deserve some preliminary discussion here.

Looking at figure 1.10 again, we may be led to believe that the secret
to the tendency toward the formation of the Sierpinski gasket is our choice
of an appropriately dimensioned rectangle as the initial image in starting the
feedback process. To show that this is not the case, let us assume that instead
of a rectangle as the initial image, we choose a triangle or any arbitrary image,
which may be represented well enough by the letters NCTM. The question is:
What will then evolve in the process? Figure 1.11 gives the answer. The same
final structure is approximated as we run the machine. Each step produces
a composite of images which rapidly decrease in size. It doesn’t matter in
the least whether these images are rectangles, triangles, or the letters NCTM;
the same final composite image is approached in each case — namely, the
Sierpinski gasket. In other words, the machine produces one — and only
one — final image in the process, and that final image is totally independent
from the image with which we start! This magnificent behavior seems to be
a miracle. But in mathematical terms it just means that we have a process
which produces a sequence of results tending toward one final object which is
independent from how we start the process. This property is called stability.

The second surprise is that the copy machine paradigm is not just a way
to recover ‘mathematical monsters’ like the Sierpinski gasket or its relatives
(soon we will see many of them). Let us ask what the images are which we can
obtain this way. What can they look like? The answer is simply incredible.
For many more natural pictures there is a copy machine of the above kind
which generates the desired picture. However, it is a difficult problem to
design the machine for a given picture. But nevertheless, in chapter 5 and the
first appendix we will introduce some of the design principles leading to the
frontiers of current mathematical research.

The point here is to see some of the variety of possible images obtained by
very simple feedback processes, the elements of which are easily manipulated
and under our control, quite unlike the video feedback experiment.
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In our first example, each lens system behaves like a similarity transfor-
mation; i.e., a rectangle is reproduced as a rectangle, a triangle with certain
angles is reproduced as a triangle with the same angles, and so on. The only
thing which is changed is the scale of the image. If we pick any two points
in the original image and compare their distances with that in the copy it will
be scaled down by a constant factor. One principal direction for an extension
will be to allow lens systems which reduce by different factors in different
spatial directions. For example, the lens system may reduce by a factor of
1/2 in the horizontal direction and by a factor of 1/3 in the vertical direction.
The effect of such a system is to destroy similarity: A square is reduced to a
rectangle; a triangle with certain angles is reduced to a triangle with different
angles. In mathematical terms we speak of affine transformations. Simili-
tudes and affine transformations are, however, in one class of mathematical
objects: linear transformations, i.e., transformations which when applied to a
straight line reproduce a straight line. Only if we allow such extensions, will
the metaphor of the copy machine develop its full power (see chapter 5).

From Similar to Affine

Nonlinear Transformation

The complex square root applied to vV z-05
the letters MRCM in the plane. Note — R["
that angles are preserved.

Figure 1.12

Real lens systems are usually not perfect similitudes. They distort an image
more or less. As a radical example, a straight line seen through a fisheye lens
is reproduced as a curved line. In mathematical terms we speak of nonlinear
effects. Let us simulate such an effect in a simplistic model. Let us consider
the numbers which are larger than 1. If we multiply such numbers by a factor
of 1/3, for example, we have a perfect similitude. If we take the square root,
however, we have a typical nonlinear effect: The segment between 1 and 10 is
reduced to the segment between 1 and v/10 ~ 3.16, whilethe segmentbetween
1 and 100, which is 11 times as long, is reduced to the segment between 1
and 10, which is only about 4 times as long as the segment between 1 and
\/ﬁ. The reduction factor changes, i.e., it depends on the location where the
transformation is applied (see figure 1.12). Copy machines with nonlinear
lens systems are the content of chapter 13, and will lead to the famous Julia
sets as well as the Mandelbrot set. Incidentally, the systems discussed there
are related to similitudes in one important sense: They preserve angles.

From Linear to
Nonlinear
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1.3 Basic Types of Feedback Processes

We will now turn to feedback machines which process numbers. But before
we get involved in the discussion of specific examples, let us take an overview.
One-Step Machines One-step machines are characterized by an iteration formula z,; =
f(xy), where f(x) can be any function of . It requires one number as
input and returns a new number — the result of the formula — as output
(e.g, f(zn) = x2 4 1). The formula can be controlled by a fixed parameter
(e.g., 2 +c, ie., with control parameterc), but in any case the output depends
only on the input. The numbers are indexed in order to keep track of the time

(cycle) in which they were obtained.

'x-ﬂ-i-l: -r(XFI] @

One-Step Feedback Machine

Principle of the one-step feedback
machine.

Figure 1.13

One-step machines are very useful mathematical tools and have been de-
veloped in particular for the numerical solution of complex problems. They
have a tradition in mathematics which goes back at least a few thousand years.

The following example of a one-step feedback machine is an algorithm
which was already known to the Sumerian mathematicians some 4000
years ago. It is a beautiful example of the strength and continuity of
mathematics. Mankind has seen many advances and terrible setbacks
since those times, while the power and beauty of mathematical thought
has remained.

Given a > 0. Compute a sequence x1, 3, Z3,... such that the
limit is \/E, i.e., T, approaches \/a closer and closer as we proceed
to larger and larger n. Here is how x,, is defined. We begin with an
arbitrary guess xg > 0 and continue with

xn+1=1(xn+i), n=01,2,... (1.1)
2 Ln

Let us look at an example, V2. We guess o = 2. Then

1 2 1 2
= - —_ = — 2 - :1.['
z1 2($o+x0> 2( +2> b}

1 2 1 2 17
== —}==(15+—}=-—=141666...
T 2<x1+$> 2<o+ r) 2 1.4166

and so on.

and

Ancient Square Root
Computation
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Let us give a brief argument why this method works in order to
understand how well it works. To this end we introduce the relative
error ¢, of x,,, where e, is defined by the equation

2o = (14 en) Va. (1.2)

Replacing z, by the equivalent (1 + ¢,,)/ain egn. (1.1) we arrive at

62
Tp+l = \/a (1 + - ) .

2+ 2e,

Thus, using the definition in egn. (1.2) again, we obtain an expression
for the error e;,+1

2
On (1.3)
2+ 2e,

S

Now zy > 0O and therefore ¢q > —1, and thus ¢, > Ofor n =
1,2,3,... Butthen z,, > /a forall n > 0. Finally, we can obtain
estimates out of egn. (1.3). If we drop the 2" in the denominator we
obtain

€n

€n+1 < 7

and if we drop “2e,,’ we obtain
2
J .

2
The first inequality and the definition of e, by eqn. (1.2) shows that

ent1 <

x1>x2>13>~->\/ﬁ

and that the limit is y/a. The second inequality shows that if
en < 107" then e,y < 1072 /2, i.e., in each step of the sequence
the number of correct digits is nearly doubled. This algorithm for
the computation of the square root is an example of a more general
method for the solution of nonlinear equations, which was discovered
about 4000 years later and is nowadays called Newton’s method.

One-step feedback processes represent only a particular class of a whole Two-Step Feedback

family of feedback methods. Another class is known as two-step methods. Methods
Here the output is typically computed by a formula like

Tpt1 = g(l'n»xn—l)'

Take, for example, the law which generates the Fibonacci numbers

g('rnaxnfl) =Ty + Tp—1-
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Leonardo Pisano, also known as Fibonacci® was one of the outstanding
figures in medieval Western mathematics. He traveled widely in the
Mediterranean world before settling down in his native Pisa. In 1202 he
published his book, Liber Abaci, which changed Europe. It acquainted
Europeans with the Indian Arabic ciphers 0, 1, 2, ... His book also
contained the following problem, which has inspired people ever since.
There is one pair of rabbits which is born attime 0. After one month that
pair is mature and a month later gives birth to a new pair of rabbits and
continues to do so (i.e., every month a new pair is born to the original
pair). Moreover, each new pair of rabbits matures after one month and
begins producing pairs of offspring every month after that ad infinitum.
One assumes that the rabbits live forever. What is the number of pairs
after n months?

Let us be careful and follow the evolution of rabbits step by step. In
our rabbit population, let us distinguish between adult and young pairs
of rabbits. A just-born pair is young, of course, and turns adult after
one time step. Moreover, an adult pair gives birth to a young pair after
one time step. Now let J,, and A,, be the number of young and adult
pairs after n months, respectively. Initially, attime n = 0, there is only
one young pair (Jy = 1, Ap = 0). After one month the young pair
has turned into an adult one (J; = 0, 4; = 1). Aftertwo months the
adult pair gives birth to one young pair (J2 = 1, A, = 1). Then again
after the next month. Moreover, the young pair turns into an adult one
(Js = 1, A3 = 2). The general rule, of course, is that the number
of newborn pairs J,,41 equals the previous adult population A,,. The
adult population grows by the number of immature pairs, J;,, fromthe
previous month. Thus, the following two formulas completely describe
the population dynamics

Jn+1 = Am

1.4
An+1: An+Jn (-4)

As iniial values we take Jo = 1 and Ap = 0. From the first of the
above equations it follows that J,, = A,_1. Inserting this into the
other equation we obtain

An+1 = An + An—l

with Ay = 0 and A; = 1. This is a single equation for the total rabbit
population. Using this equation, the number of pairs in successive
generations is easily computed:

0,1,1,2,3,5,8,13,21, 34,55, 89, 144, 233, . ...

Each number in this sequence is just the sum of its two predecessors.
This sequence is called the Fibonacci sequence.

We have established another feedback system, but this one is a
little different from the previous systems. In all the earlier feedback
loops, the state at time n was determined only by the preceding state

®Filius (=son) of Bonacci.

Fibonacci Numbers and the
Rabbit Problem
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attime n — 1. Such systems are called one-step loops. For the Fi-
bonacci sequence the state at time n + 1 requires information from
states n and n — 1. Such systems are called two-step loops. The
simple and innocent-looking Fibonacci sequence has a variety of in-
teresting properties. Thousands of papers have been published about
them, and there is even a Fibonacci-Association with its own periodical,
Fibonacci Quarterly, which reports on the never-ending stream of new
results. One property has been known for a long time and has led to
amazing recent research in biology, as well as having had astonishing
applications in architecture and the arts for many centuries.

Apparently the Fibonacci sequence can grow beyond all limits. Our
rabbits exhibit a kind of a population explosion. We can ask, however,
how the population progresses from generation to generation. For that
purpose we look again at the Fibonacci numbers and compute the
ratios of succeeding generations (rounded to six decimals).

An | Ang1/Arn | In Decimals
1 11 1.0
1 21 2.0
2 3/2 15
3 5/3 1.666666
5 8/5 1.6
8 13/8 1.625

21/13 1.615385
21 34/21 1.619048
34 55/34 1.617647
55 89/55 1.618182
89 144/89 1.617978
144 | 233/144 1.618056
233 | 377/233 1.618026

T30 NO R ®N 2O
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Apparently we are approaching steadily, if not exactly rapidly, some
particular number. Have you seen that mysterious number

1.618033988749894848820 . . .

before? Let us open the curtain.

&

L+

1.61803398 ... = 5

which is the famous golden mean, or proportio divina,” as they called
it in the middle ages. This number has inspired mathematicians,
astronomers and philosophers like no other number in the history of
mathematics.

"Divine proportion (Latin).
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Feedback Machines
with Memory

One-Step Machines
with Two Variables

At first it seems that processes of two-step methods are not covered by
the concept of a feedback machine as we have discussed it so far. Indeed,
the output x,+1 depends not only on the last step x,,, but also on the step
preceding the last, namely, z,—1. Consequently, it may appear natural to
extend the design of our feedback machines so that the concept incorporates
a certain memory which conserves some information from the last cycles.

Machines with memory are typical for our computer age. While a machine
without memory reacts on their inputs always in the same way, a machine
with memory may react differently upon taking its own state or content of
the memory into account. Take, for example, a soft drink machine. You will
not be successful in getting a soda by just pushing a button. First you have
to insert the right amount of money to make sure that the machine is in the
appropriate state to accept your input.

Let us now extend the concept of a feedback machine by equipping the
processing unit with an internal memory unit. Then the iteration of a two-step
method Zn4+1 = g(Zn, Tr-1) can be implemented as follows. First note that
to start the feedback machine two initial values zg and x; are required.

Preparation: Initialize the memory unit with g and the input unit with ;.

Iteration:  Evaluate .11 = g{x,, Zn—1),Where Z,, is in the input unit and
Zn—1 1S in the memory unit. Then update the memory unit with
‘,'L"n.

Somehow it seems that feedback machines with memory should be more
flexible in modeling different phenomena. But this is not at all the case.
Rather, a machine with memory can be seen to be equivalent to a one-step
machine which, however, works on vectors as input and output information.
Input and output are given as pairs, or triples, or quadruples, and so on, of
numbers. In other words, a pair of input variables (2, Z,—1) generates a pair
of output variables (Zn41, Tn)-

Formally, we introduce a new variable, ¥, = z,—_1, and extend the formula
Zn+1 = g(Zn,Tn—1) to the equivalent pair:

Tntl = g(a:n,yn)

Ynil = Tn
Two-Step Loop
Tasr = 85 Yn) L - Two-step loops are a special case
Iner = A of one-step feedback machines with

two variables.

Figure 1.14

This simple trick can easily be generalized. For example, let us assume
that the formula which determines the feedback depends on k preceding itera-
tions. Then one can rewrite this single formula as a one-step process which is
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given by a set of £ formulas by introducing k independent variables. Usually,
the independent variables are combined into a vector of variables. The pair
(Zn, Yn ), for example, can be written symbolically as a single new variable
Zn. Moreover, we can then rewrite the set of formulas Zpn4+1 = g(Zn, Yn),
Yn+1 = Zn, by a singleformula: Z,; = G(Z,). In other words, we do
not have to go to the trouble of developing a special machine for two-step
methods. They are perfectly covered by one-step machines.

The Rabbit Problem As Let us give one example, the Fibonacci numbers, defined by the two-

One-Step Machine step method

An+1 = g(Ana An—l) = An + An—l

with Ag = 0 and A; = 1. The equivalent equations for a one-step

method operating on pairs (:rm ’yn) are

Tn41= Ty + Yn
Yn+1= Tn

with initial settings zq = 0 and g = 1. This is exactly the same as in

the derivation on page 29 setting =,, = A,

and y, = J,.

Using the compact notation G(X,,) for a whole set of formulas in the pro-
cessing unit considerably simplifies the description of seemingly complicated
feedback processes. Here is another example, which will become important
in chapters 2 and 10:

:r | az, if <05
T a(l~z,) if x> 0.5.

Here a denotes a parameter, e.g., & = 2 or @ = 3. Rather than introducing
a feedback machine with two formulas and an additional switch, we will
rewrite the above system of two equations as a one-step process of the form
Zn+1 = f(zn), where f is the transformation, whose graph — known as the
tent transformation — is given in figure 1.15.

One-Step Machines
Based on Combined

Formulas

The Tent Transformation

The tent transformation is given by

T) = ife <0.5and — 3
f(z) =azifzr <0.5and —az +a f(A')={

if z > 0.5. Here the parameter ¢ =
3 has been chosen.

x ifx=0.5
3-3x ifx =0.5

Figure 1.15
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This is an algorithm which produces sequences of integers in a most The (3A + 1)-Problem
simple way, but yet its unfolding is still not completely understood. Here
is the original formulation due to Lothar Collatz:

Step 1: Choose an arbitrary positive integer A.

Step 2: If A = 1, then STOP.

Step 3: If A is even, then replace A by A/2 and go to step 2.
Step 4: If A is odd, then replace A by 3A + 1 and go to step 2.

Let us try a few choices for A:

¢ 3,10, 5, 16, 8, 4, 2, 1, STOP
e 34, 17,52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1, STOP
e 75, 226, 113, 340, 170, 85, 256, 128, 64, 32, 16, 8, 4, 2, 1, STOP

The obvious conjecture is the following: the algorithm comes to a stop
no matter what the initial A is. Well, it seems that the larger the initial A
is the more steps we have to run until we arrive at 1 . Let us try A =27
to verify that guess.

e 27,82, 41, 124, 62, 31, 94, 47, 142, 71, 214, 107, 322, 161, 484,
242,121, 364, 182, 91, 274, 137, 412, 206, 103, 310, 155, 466, 233,
700, 350, 175, 526, 263, 790, 395, 1186, 593, 1780, 890, 445, 1336,
668, 334, 167, 502, 251, 754, 377, 1132, 566, 283, 850, 425, 1276,
638, 319, 958, 479, 1438, 719, 2158, 1079, 3238, 1619, 4858, 2429,
7288, 3644, 1822, 911, 2734, 1367, 4102, 2051, 6154, 3077, 9232,
4616, 2308, 1154, 577, 1732, 866, 433, 1300, 650, 325, 976, 488,
244, 122, 61, 184, 92, 46, 23, 70, 35, 106, 53, 160, 80, 40, 20, 10,
5,16, 8,4,2,1, STOP

Apparently our guess was not correct. Moreover, seeing this example
we can really begin to wonder whether all sequences will eventually
stop. As far as we know this problem is still unsolved. However, the
conjecture has been verified with the aid of computers up to at least
A = 10°. Such a test is not as straightforward as we might think, be-
cause in the course of the calculations the sequence may exceed the
largest possible number which the computer is able to accurately rep-
resent. Thus, some variable precision routines must be programmed
in order to enlarge the range of numbers representable by a computer.

The algorithm can easily be extended to negative integers. Here
are a few examples:

e —1, -2, -1, -2, ... CYCLE of length 2

e -3, -8, -4, -2, -1, ... runs into CYCLE of length 2

e -5 —14, -7, -20, —10, -5, —14, ... CYCLE of length 5

e -6, -3, -8, -4, —2, —1, ... runs into CYCLE of length 2

e -9, 26, -13, -38, —19, 56, ... runs into CYCLE of length 5
e —11, -32, —-16, -8, -4, -2, —1, ... runs into CYCLE of length 2

Are there other cycles? Yes indeed:

e —17, -50, 25, —-74, -37, -110, -55, —164, -82, —41, —122,
-61, —182, —91, — 272, —136, —68, —34, —-17, ...CYCLE of
length 18



34 1 The Backbone of Fractals

If we modify our algorithm by removing the STOP in Step 1 we also
obtain a cycle for A = 1:

e 1,4 2 1,...CYCLE of length 3
and if we also allow A = 0:
¢0,0,...CYCLE of length 1.

Moreover, we may now write the algorithm as a feedback system:

- | a2 if 2, is an even integer,
17 3z, + 1 ifa, is an odd integer.

Thus, the general questions are: what are the possible cycles of
the feedback system, and does any initial choice for £y generate a
sequence which eventually runs into one of these cycles? This seems
to be a moderate question which the enormous body of mathematics
should have already answered — or at least be prepared to answer
with no great difficulty. Unfortunately, this is not the case, which only
shows that there is still a lot to do in mathematics and, moreover,
simple-looking problems may be awfully hard to solve; a truly important
lesson for life.

A more subtle and surprising case is given by our MRCM machines from MRCM As a One-Step
the last section. They also can be interpreted as one-step machines, which are Machine
mathematically described by a single formula of the kind X,,+; = F(X,).

Incidentally, in this case F is called the Hutchinson operator. We will discuss

the details in chapter 5.
While all previous machines are strictly deterministic our last class of Wheel-of-Fortune
machines combines determinism with randomness. Similar to the previous Machines

examples, there is a reservoir of different formulas in the processing unit.
In addition, however, there is a wheel of fortune, which is used to select
one of the formulas at random. The input is a single number (or a pair of
numbers), and the output is a new number (or a pair of numbers), which is
the result of a formula with values determined by the input. The formula is
chosen randomly from a pool at each step of the feedback process. In other
words, the output does notjust depend on the input, much like in the case of
machines with memory. Unfortunately, however, there is no standard trick
to rewrite the process as a (deterministic) one-step machine. If the number
of formulas is N, then the wheel of fortune has N segments, one for each
formula. The size of the segment can be different for each of them in order to
accommodate for different probabilities in the random selection mechanism.
Random machines like this will furnish extremely efficient decoding schemes
for images, which are encoded by the metaphor of a copy machine. This is
the content of chapter 6.
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We want to touch upon a further exciting interpretation of what we
learned in the multiple reduction copy machine, and this is another
incredible relation between chaos and fractals.

The following ‘game’ has been termed chaos game by Michael F.
Barnsley. At first glance, however, there seems to be no connection
whatsoever with chaos and fractals. Let us describe the rules of the
game. Well, actually, there is not just one game; there is an infinite
number of them. But they all follow the same scheme. We have a die
and some simple rules to choose from. Here is one of the games:

Preparations: Take a sheet of paper and a pencil and mark three points
on the sheet; label them 1, 2, and 3; and call them bases.
Have a die which allows you to pick the numbers 1, 2,
and 3 randomly. It is obvious how to manufacture such
a die. Take an ordinary die and just identify the faces 6
with 1, 5 with 2, and 4 with 3.

Rules: Start the game by picking an arbitrary point on the sheet
of paper and mark it by a small dot. Call it the game point.
Now roll the die. If number 2, for example, comes up,
consider the line between the game point and base 2 and
mark a dot exactly in the middle, i.e., halfway between
the game point and base 2. This dot will be the new
game point, and we have completed the first cycle of the
game. Now repeat (i.e., roll the die again) to randomly
get the number 1, 2, or 3; and depending on the result,
mark a dot halfway between the last game point and the
randomly chosen base.

The first game points shown in figure 1.17 are labeled in the order
of their generation by xg,x1,x2,... The chaos game is a very sim-
ple scheme to produce a random sequence of points; and as such it
appears to be rather boring. But this first impression will immediately
change when we see what is going to evolve in this feedback system.

What do you guess the outcome of the game will be after a
great many cycles, i.e., what is the picture obtained by the dots
Zo,Z%1,-..;Z10007 Note that once the game point is inside the trian-

‘Wheel-of-Fortune Machine

Feedback machine with fortune
wheel.

Figure 1.16

The Chaos Game
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—

Figure 1.17: The three base points (vertices of a triangle) and a few iterations
of the game point.

500 dots

Figure 1.18 : 500, 1000 and 1500 dots of the chaos game.

gle, which is defined by the three base points, the process will remain
inside forever. Moreover, it is obvious that sooner or later the game
point will land inside this triangle even if we start the game outside.
Therefore, intuition seems to tell us that because of the random
generation we should expect a random distribution of dots somehow
arranged between base 1, 2, and 3. Yes, indeed, the distribution will
be random, but not so the picture or image which is generated by the
dots (see figure 1.18). It isn't random at all. We see the Sierpinski
gasket emerge very clearly; and this an extremely ordered structure
— exactly the opposite of a random structure.

At this point this phenomenon seems to be either a small miracle or
a funny coincidence, but it is not. Any picture which can be obtained by
the MRCM can be obtained by an appropriately adjusted chaos game.
In fact, the picture generation can generally be accelerated this way.
Moreover, the chaos game is the key to extending the image coding
idea which we discussed for the multiple reduction copy machine to
grey scale or even color images. This will be the content of chapter 6,
which will provide an elementary lesson in probability theory — though
one filled with beautiful surprises.
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1.4 The Parable of the Parabola — Or: Don’t Trust Your

Computer

Let us now turn to quadratic iterators. First, we implement the expression
z2 + ¢ in our iterator framework. Here z and ¢ are just numbers; however,
with different meanings. To iterate this expression for a fixed (control) value
¢ means this: start with any number x, evaluate the expression, note the result
and use this value as new x, evaluate the expression, and so on. Let’s look at
an example:

Preparation: Choose a number for ¢, say ¢ = —2. Then choose a number z,
for example z = 0.5.

Iteration: ~ Evaluate the expression for x, obtaining 0.25 - 2 = -1.75.
Now repeat, i.e., evaluate the expression using the result of the
first calculation as the new z, i.e., evaluate for x = —1.75,which

yields 1.0625, and so on.

The Quadratic Iterator

The quadratic iterator interpreted as
a feedback machine. The processing
unit is designed to evaluate 2* + ¢,

givenz and c.

2
y=x'+c

Figure 1.19

Do Minor Differences
Matter?

The table summarizes the results for the first four iterations:

x 2 4ec
0.5 -1.75
-1.75 1.0625
1.0625 -0.87109375
-0.87109375 | —1.2411956787109375

Already after four cycles we are running into a problem. Because of the
squaring operation the number of decimal places which are needed to represent
the successive output numbers essentially doubles in each cycle. This makes
it impossible to achieve exact results for more than a few iterations because
computers and calculators work with only a finite number of decimal places.®

This is, of course, a common problem in calculator or computer arithmetic,
but we don’t usually worry about it. In fact, the omnipotence of computers
leads us to believe that these minor differences don’t really matter. For ex-

$For example, the Casio fx 7000G has 10, and the Hewlet-Packard 28S has 12 decimal digits of accuracy.
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ample, if we compute 2 * (1/3) we usually don’t worry about the fact that
the number 1/3 is not exactly representable by our calculator. We accept the
answer 0.6666666667, which, of course, is different from the exact represen-
tation of 2/3. Even in a messy calculation, we are usually inclined to take the
same attitude, and some put infinite confidence in the calculator or computer
in the hope that these minute differences do not accumulate to a substantial
error.

Scientists know (or should we say knew) very well that this assumption
can be extremely dangerous. They came up with methods, which go back
to ideas of Carl Friedrich Gauss (1777-1855; see figure 1.8), to estimate the
error propagation in their calculations. With the advent of modern computing
this practice has somehow lost ground. It seems that there are at least two
reasons for this development.

Modern computing allows scientists to perform computations which are of
enormous complexity and are extensive to a degree that was totally unthinkable
even halfa century ago. In massive computations, it is often true that a detailed
and honest error propagation analysis is beyond current possibilities, and this
has led to a very dangerous trend. Many scientists exhibit a growing tendency
to develop an almost insane amount of confidence in the power and correctness
of computers.

If we go on like this, however, we will be in great danger of neglecting
some of the great heroes of science and their unbelievable struggle for accuracy
in measurement and computation. Let us remember the amazing story of
Johannes Kepler’s model of the solar system. Kepler devised an elaborate
mystical theory in which the six known planets Mercury, Venus, Earth, Mars,
Jupiter, and Saturn’ were related to the five Platonic solids (see figure 1.21).

Brahe and Kepler

Tycho Brahe, 1546-1601 (left) and
Johannes Kepler, 1571-1630 (right).

Figure 1.20

The Problem of Error
Propagation

°These planets were known in ancient times before the invention of the telescope. The seventh planet Uranus was not discovered
until 1781 by the amateur astronomer Friedrich Wilhelm Herschel, and Neptune was only discovered in 1846 by Johann Gottfried
Galle at the Observatory in Berlin. The ninth and most distant planet Pluto was discovered in 1930 by Clyde William Tombaugh

at Lowell Observatory in Flagstaff, Arizona.
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Kepler’s Model of the Solar
System

Each planet determines a sphere
around the sun containing its orbit.
Between two successive spheres Ke-
pler inscribed a regular polyhedron
such that its vertices would lie on the
exterior sphere and its faces would
touch the interior sphere. These
are the octahedron between Mercury
and Venus, the icosahedron between
Venus and Earth, the dodecahedron
between Earth and Mars, the tetrahe-
dron between Mars and Jupiter, and
the cube between Jupiter and Saturn.

Figure 1.21
Small Deviations with In attempting to establish his mystical theory of celestial harmony, he had
Consequences to use the astronomical data available at that time. He realized that the con-

struction of any theory would require more precise data. That data, he knew,
was in the possession of the Danish astronomer Tycho Brahe (1546-1601)
who had spent 20 years making extremely accurate recordings of the plane-
tary positions. Kepler became Brahe’s mathematical assistant in February of
1600 and was assigned a specific problem: to calculate an orbit that would
describe the position of Mars. He was given this particular task precisely
because that orbit seemed to be the most difficult to predict. Kepler boasted
that he would have the solution in eight days. Both the Copernican and the
Ptolemaic theories held that the orbit should be circular, perhaps with slight
modification. Thus, Kepler sought the appropriate circular orbits for Earth and
Mars. In fact, the orbit for Earth, from which all observations were made, had
to be determined before one could satisfactorily use the data for the positions
of the planets. After years, Kepler found a solution that seemed to fit Brahe’s
observations. Brahe had died in the meanwhile. However, checking his orbits
— by predicting the position of Mars and comparing it with more of Brahe’s
data — Kepler found that one of his predictions was off by at least § minutes
of arc, which is about a quarter of the angle diameter of the moon. It would
have been most natural to attribute this discrepancy to an error in Brahe’s ob-
servations, especially because he had spent years in making his calculations.
But having worked with Tycho Brahe, he was deeply convinced that Brahe’s
tables were accurate and therefore continued his attempts to find a solution.
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This led him in six more years of difficult calculations filling more than 900
pages, to his revolutionary new model, according to which the orbits of the
planets are elliptical rather than circular. In 1609 he published his famous
Astronomica Nova, in which he announced two ofhis three remarkable laws.
These are the law of elliptical paths, i.e., the orbit of each planet is an ellipse
with the sun at one focus, and the law of areas, i.e., during each time interval,
the line segment joining the sun and planet sweeps out an equal area anywhere
on its elliptical orbit (see figure 1.22). The third law'® was published later and
helped Sir Isaac Newton formulate his law of gravity.

Kepler’s First and Second
Law

Figure 1.22

Elis Stromgren Computations To demonstrate the enormous leaps which we have made through
for the Restricted Three-Body computers, we present the following instructive example. Figure 1.23
Problem shows the result of computations, which were carried out by 56 scien-
tists under Elis Stromgren at the Observatory of Copenhagen (Den-
mark) during a period of 15(!) years. The computations show particu-
lar solutions to the so-called restricted three-body problem (orbits of a
moon under the influence of two planets) and were published in 1925.

Computations of this order of magnitude and complication would
keep an ordinary PC busy for just a few days, if that long. This
relation documents very well what some people call a scientific and
technological revolution, namely, the revolution fueled by the means
and power of modern scientific computation.

More and more massive computations are being performed now using  The Problem of Black
black box software packages developed by sometimes very well known and Box Software
distinguishedcenters. These packages, therefore, seemtobe very trustworthy,
and indeed they are. But this doesn’t exclude the fact that the finest software
sometimes produces total garbage, and it is an art in itself to understand and
predict when and why this happens. Moreover, users often don’t have a
chance to carry out an error analysis simply because they have no access to
the black box algorithms. More and more decisions in the development of
science and technology, but also in economy and politics, are based on large-

10The law of times: the square of the time of revolution of a planet about the sun is proportional to the cube of its average
distance from the sun.
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Orbits of the Restricted
Three-Body Problem

Weather Paradigm
from James Gleick

Figure 1.23

scale computations and simulations. Unfortunately, we cannot always take
for granted that an honest error propagation analysis has been carried out to
evaluate the results. Computer manufacturers find themselves in a race to
build faster and faster machines and seem to pay comparatively little attention
to the important issue of scientific calculation quality control.

To amplify the importance of such considerations we would like to quote
from James Gleick’s Chaos, Making a New Science."'

“The modern weather models work with a grid of points on the order of
sixty miles apart, and even so, some starting data has to be guessed, since
ground stations and satellites cannot see everywhere. But suppose the earth
could be covered with sensors spaced one foot apart, rising at one-foot intervals
all the way to the top of the atmosphere. Suppose every sensor gives perfectly
accurate readings of temperature, pressure, humidity, and any other quantity a
meteorologist would want. Precisely at noon an infinitely powerful computer
takes all the data and calculates what will happen at each point at 12:01, then
12:02, then 12:03, ... The computer will still be unable to predict whether
Princeton, New Jersey, will have sun orrain on aday one month away. Atnoon
the spaces between the sensors will hide fluctuations that the computer will
notknow about, tiny deviations from the average. By 12:01, those fluctuations
will already have created small errors one foot away. Soon the errors will have

"Tames Gleick, Chaos, Making a New Science, Viking, New York, 1987.
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multiplied to the ten-foot scale, and so on up to the size of the globe.”

This phenomenon has become known as the butterfly effect, after the title
of a paper by Edward N. Lorenz ‘Predictability: Does the flap ofa butterfly’s
wings in Brazil set off a tornado in Texas?’ Advanced calculation quality
control in weather forecasting means to estimate whether the mechanisms
which are at the heart of weather formation are currently in a stable or unstable
state. Sooner or later the TV weather man will appear and say: ‘Good evening;
this is Egon Weatherbring. Because of the butterfly effect, there is no forecast
this evening. The atmosphere is in an unstable state, making it impossible to
take sufficiently accurate measurements for our computer models. However,
we expect it to stabilize in a few days, when we will give you a prediction for
the weekend.’

Logistic Feedback Iterator

Feedback machine for the logistic
equation. The processing unit is de-
signed to evaluate p + rp(1 — p),

given p and 7.

Posr = p:r+rpn“ -p")

Figure 1.24

Let us now return to the iteration of quadratic expressions and look at the
expression

p+rp(l —p).

First, this expression can be built into an iterator as easily as we did with 2 +c.

The quadratic expression p + rp(1 — p) has a very interesting interpre-
tation and history in biology. It serves as the core of a population dynamics
model which in spirit goes back to the Belgian mathematician Pierre Francois
Verhulst'? and his work around 1845 and which led May to his famous article
in Nature.”

What is a population dynamics model? It is simply a law which, given
some biological species, allows us to predict the population development of
that species in time. Time is measured inincrements 7 = 0,1, 2, .. .(minutes,
hours, days, years, whatever is appropriate). The size of the population is
measured at time n by the actual number in the species B, . Figure 1.25 shows
a typical development.

Back to the Quadratic
Iteration

A Population
Dynamics Model

"Two elaborate studies appeared in the Mémoires de I’Académie Royale de Belgique, 1844 and 1847.
BR.M. May, Simple mathematical models with very complicated dynamics, Nature 261 (1976) 459-467.
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Time Series of a Population

Time series of a population — a typ-
ical development. Successive mea-
surements are connected by line seg-
ments.

10 15 20

Of Mice and Old
Maids

The Petri Dish
Scenario

Figure 1.25

Naturally, the size of a population may depend on many parameters, such
as environmental conditions (e.g., food supply, space, climate), interaction
with other species (e.g., the predator/prey relationship), but also age structure,
fertility, etc. The complexity of influences which determine a given population
in its growth behavior is illustrated in the following medieval parable.

This year there are a lot of mice in the fields. The farmer is very concerned
because he can harvest very little grain. That results in a period of very poor
dowries, which leads to there being many more old maids. They all tend to
love cats, which increases the cat population dramatically. That in turn is bad
for the mice population. It rapidly decreases. This makes for happy farmers
and very rich dowries, very few old maids, very few cats, and therefore, back
come the mice. And so it goes, on and on.

Though we shouldn’t take this too seriously as a model for mice and maid
populations, it indicates the potential complexity of population dynamics. It
also shows that populations may display cyclic behavior: up — down — up
— down, and so on.

A natural modeling approach tries to freeze as many of the population
parameters as possible. For example, assume that we have a species of cells
which live in a constant environment, e.g., a petri dish with a constant food
supply and temperature. Under such conditions we expect that there is some
maximal possible population size N which is supported by the environment.
If the actual population P at time n. whichis P,,is smaller than N, we expect
that the population will grow. If, however, P, is larger than N, the population
must decrease.

Now we want to introduce an actual model. Just as velocity is one of the
relevant characteristics for the motion of a body, so is growth rate the relevant
characteristic for population dynamics. The growth rate is measured by the
quantity

Pn+1‘Pn

7 (1.5)

In other words, the growth rate r at time n measures the increase of the
population in one time step relative to the size of the population at time 7.
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Population Growth and
Interest

If the population model assumes that the growth rate r is constant,
then

Pn+1_Pn

P =7 (1.6)

for some number 7 independent of n. Solving for P,,;; we obtain the
population growth law'*

Poya=Ppo+7P,=(1+7)P,.

In such a model the population grows by a factor of 1 + r each time
step. Indeed, the formula is equivalent to

P,=(1+nr"P, (1.7)

where Py is the initial population with which we start our observations
at time 0. In other words, knowing » and measuring P, would suffice
to predict the population size P, for any point in time without even
running the feedback process. In fact, egn. (1.7) is familiar from
computing the accumulation of principal and compound interest, when

the rate of interest is 7.

The most simple population model would assume a constant growth rate,
but in that situation we find unlimited growth which is not realistic. In our
model we will assume that the population is restricted by a constant environ-
ment, but this premise requires a modification of the growth law. Now the
growth rate depends on the actual size of the population relative to its maximal
size. Verhulst postulated that the growth rate attime n should be proportional
to the difference between the population count and the maximal population
size, which is a convenient measure for the fraction of the environment that
is not yet used up by the population attime n. This assumption leads to the
Verhulst population model

Prt1 = Dn + 7001 — Dp), (1.8)

where pp, measures the relative population count p,, = P, /N and N is the
maximal population size which can be supported by the environment. Thisis
just a compact notation for our feedback process. We use integer indices to
identify iterates at different time steps (p,, for input, p,1 for output).

The Verhulst
Population Model

Derivation of the Verhulst
Model

This population model assumes that the growth rate depends on the
current size of the population. First we normalize the population count
by introducing p = P/N. Thus we interpret p = 0.06, for example,
as the population size being 6% of its saturation value N. Again we
index p by n, i.e., we write p,, to refer to the size at time steps n =

“Note that the concept of growth rate does not depend on N, i.e., if we use a normalized count p, = Py, /N, then N cancels
out in 7 = (Pn4-1 — Pn)/Pn the equivalent of eqn. (1.6).
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0,1,2,3,... Now growth rate is measured by the quantity already given
corresponding to the expression (1.5),

Pnt1 — Pn
Dn

Verhulst postulated that the growth rate attime n should be proportional
to 1 — p, (the fraction of the environment that is not yet used up by
the population at time n). Assuming that the population is restricted
by a constant environment the growth should change according to the

following table.

Normalized Population p | Growth Rate
small positive, large
about 1 small
less than 1 positive
greater than 1 negative
In other words,"
DPnt+1 — Pn x1—p,,
bn

or, after introducing a suitable constant r.

Pny1 — Pn
Dn

=7(1~pn).

Solving this last equation yields the population model egn. (1.8)

DPnt1 =Dn + Tpn(l _pn)-

The Logistic Model

Following Verhulst this model given by eqn. (1.8) is called the logistic
model'® in the literature. There are several interesting remarks. First, note
that it is in agreement with the table of growth rates in the technical section
above. Second, itseems as if we again have alaw which allows us tocompute
(i.e., predict) the size of the population for any point in time just as in the case
of a constant growth rate. But there is a fundamental difference. For most
choices of 7, thereisnoexplicitsolution suchaseqn. (1.7)foreqn.(1.6). That
is, pn cannot be written as a formula of 7 and pg, as was previously possible.
In other words, if one wants to compute p,, from pg one really has to run the
iterator in figure 1.24 n times. We will begin our experiments with the setting
r = 3.7 The table below lists the first three iterates for po = 0.01, i.e., the
initial population is 1% of the maximal population size N.

'>The o sign means ‘proportional to’. The quantity on the left side is a multiple of the expression on the right side.

"From logis (french) = house, lodging, quarter.
"It turns out that » = 3 is one of those very special choices for which there is an explicit formula of p,, in terms of 7 and po

(see chapter 10).
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D p+rp(l —p)
0.01 0.0397
0.0397 0.15407173
0.15407173 | 0.545072626044...

For the same reasons as we noted when we iterated x® + ¢, we observe that
continued iteration requires higher and higher computational accuracy if we
insist on exact results. But that appears to be unnecessary in our population
dynamics model. Isn’t it enough that we get some idea for how the population
develops? Shouldn’t we be satisfied with an answer which is reliable up to
three or four digits? After all, the third decimal place controls only some tenth
of a percent in our model. Thus, it seems, there is no reason not to trust that
a computer or calculator will do the job. But this is definitely not true as a
general rule — computed predictions in our model can be totally wrong.

This is at the heart of what scientists nowadays call the presence of chaos in
deterministic feedback processes. One of the first ones who became aware of
the significance of these effects was the MIT meteorologist Lorenz in the late
fifties."* He discovered this effect — the lack of predictability in deterministic
systems — in mathematical systems which were designed to test long-range
weather predictions.

As so often is the case with new discoveries, Lorenz stumbled onto the
effect quite by accident. In his own words,” the essential part of the events
were as follows.

“Well, this all started back around 1956 when some [...] methods of
[weather] forecasting had been proposed as being the best methods available,
and I didn’t think they were. I decided to cook up a small system of equations
which would simulate the atmosphere, solve them by computers which were
then becoming available, and to then treat the output of this as if it were real
atmospheric observational data and see whether the proposed method applied
to it would work. The big task here was to get a system of equations which
would produce the type of output that we could test the things on because it
soon became apparent that if the solution of these equations were periodic,
the proposed method would be trivial; it would work perfectly. So we had
to get a system of equations which would have solutions which would not
be periodic, which would not repeat themselves, but would go on irregularly
and indefinitely. I finally found a system of twelve equations that would do
this and found that the proposed method didn’t work too well when applied to
it, but in the course of doing this I wanted to examine some of the results in
more detail. I had a small computer in my office then, so I typed in some of
the intermediate conditions which the computer had printed out as new initial
conditions to start another computation and went out for a while. When I
came back I found that the solution was not the same as the one I had before;

'8 Lorenz, E. N., Deterministic non-periodic flow, J. Atmos. Sci. 20 (1963) 130-141.

The Lack of
Predictability

The Lorenz
Experiment

¥In: H.-O. Peitgen, H. Jiirgens, D. Saupe, C. Zahlten, Fractals — An Animated Discussion, Video film, Freeman 1990. Also
appeared in German as Fraktale in Filmen und Gesprdichen, Spektrum der Wissenschaften Videothek, Heidelberg. 1990.
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the computer was behaving differently. I suspected computer trouble at first,
but I soon found that the reason was that the numbers that I had typed in were
not the same as the original ones, these [former ones] had been rounded off
numbers and the small difference between something retained to six decimal
places and rounded off to three had amplified in the course of two months of
simulated weather until the difference was as big as the signal itself, and to
me this implied that if the real atmosphere behaved as in this method, then
we simply couldn’t make forecasts two months ahead, these small errors in
observation would amplify until they became large.”
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Sensitive Dependence
on Initial Conditions

In other words, even if the weather models in use were absolutely correct
— that is, as models for the physical development of the weather — one

cannot predict with them for a long time period. This effect is nowadays
called sensitive dependence on initial conditions. It is one of the central
ingredients of what is called deterministic chaos.Our next experiment imitates
Lorenz’s historical one in the simplest possible way. He had used much more
delicate feedback systems consisting of twelve ordinary differential equations;
we simply use the logistic equation.”” We iterate the quadratic expression
p+ rp(1 — p) for the constant = 3 and the initial value pg = 0.01 (see table
1.27). In the left column we run the iteration without interruption, while in the
right column we run the iteration until the 10th iterate, stop, truncate the result
0.7229143012 after the third decimal place, which yields 0.722, and continue
the iteration as if that were the last output. The experiment is carried out on a
Casio fx—7000G pocket calculator.

The Lorenz Experiment for Evaluations | Without Interrupt | With Interrupt and Restart
the Population Model 1 0.0397 0.0397
In two series of iterations (same 2 0.15407173 0.15407173
starting point) one of the outputs 3 0.5450726260 0.5450726260
of the second series is truncated to 4 1.288978001 1.288978001
three decimal places and taken as in- S 0.1715191421 0.1715191421
put for the following iteration. Soon 10 0.7229143012 0.7229143012
afterwards the two series of numbers 10 0.7229143012 restart with 0.722
lose all correlation. Underlined are 15 T.%ZMTTS T.;S;Z] 4733
those first dlglt§ which are the same 20 65965292447 T-309731023
on both sides. 25 1315587846 1.089173907
30 0.3742092321 1.333105032
T 100 0.7355620299 1.327362739
able 1.27

Now, of course, the 10t iterates of the two processes agree only in 3 Trustworthy as Rolling
Dice

decimal places and it is no surprise that there is a disagreement also in the
15t jterates. But it is a surprise — and again that indicates chaos in the
system, or in the words of Lorenz, it “demonstrates lack of predictability” —
that higher iterates appear totally uncorrelated. The layout of the experiment
suggests that the column on the left is more trustworthy. But that is absolutely
misleading, as we will see in the forthcoming experiments. Eventually the
iterations become as trustworthy as if we had obtained them with a random
number generator or by rolling dice. In fact, the Polish mathematician Stan
Ulam discovered that remarkable property when he constructed numerical
random number generators for the first electronic computer ENIAC in the late
forties in connection with large-scale computations for the Manhattan Project.

20 fact, later on, Lorenz himself discovered that his system is strongly related to the logistic equation.
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1.5 Chaos Wipes Out Every Computer

Being very skeptical, we might conclude that maybe the error — truncation
after 3 decimal places — which we introduced in Lorenz’s experiment was
too large. Someone might conjecture that the strange behavior of the iteration
would disappear if we repeated the experiment with much smaller errors in
the starting values. We would not have wasted our time in calculating if that
were the case. The fact is that no matter how small a deviation in the starting
values we choose, the errors will accumulate so rapidly that after relatively
few steps the computer prediction is worthless. To fully grasp the importance
of the phenomenon, we propose a further experiment. This time we do not
change the starting values for the iteration, but we use calculators produced
by two different manufacturers. In other words, we conjecture that sooner or
later their predictions will massively deviate from each other.

What happens if we actually carry out the iteration with two different fixed
accuracy devices? What is the result after 10 iterations, or 20, or even 507
This seems to be a dull question. Doesn’t one just have to evaluate 10, 20 or
50 times? Yes, of course, but the point is that the answer depends very much
on the nature of the computation.

To demonstrate what we mean when we say that things depend on

The Computer Race into

the computation, let us compare the results obtained by two different Chaos
calculators, say a Casio and an HP. Starting with 1, let's look at 2, 3,

4, 5,10, 15, 20, ..., 50 repeated feedback evaluations (= iterations);

see table 1.28 and figure 1.29.

Evaluations Casio HP
1 0.0397 0.0397
2 0.15407173 0.15407173
3 0.5450726260 | 0.545072626044
4 1.288978001 1.28897800119
5 0.1715191421 | 0.171519142100
10 0.7229143012 | 0.722914301711
15 1.270261775 | 1.27026178116
20 0.5965292447 | 0.596528770927
25 1.315587846 1.31558435183
30 0.3742092321 | 0.374647695060
35 0.9233215064 | 0.908845072341
40 0.0021143643 | 0.143971503996
45 1.219763115 1.23060086551
50 0.0036616295 | 0.225758993390

Table 1.28 : Two different calculators at the same job do not produce the same

results.
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Figure 1.29 : Plot of the difference between the computed iteration values of
HP and Casio.

While the first and second generation of our populations are pre-
dicted exactly the same by both calculators, they totally disagree at the
50th generation: the Casio predicts that the population is about 0.4%
of the saturation value, while the HP tells us that it should be about
23%! How is that possible?

We carefully check our programs, and indeed they both are correct
and use exactly the same formula p + rp(1 — p). The only difference
is, of course, that the Casio is restricted to 10 decimals, while the HP
has 12. In other words, neither one is able to exactly represent the
iterations 3 and higher. Indeed, the second iterate needs 8 decimals
and therefore the third iterate would need 16, etc. Thus, there are
unavoidable cut-off errors, which don’t seem to matter much. At least
that is suggested if we look at iterations 4 and 5. The results of the
Casio and HP agree in 10 decimal places. However, forthe 10t jterate
we observe that the Casio and HP are in disagreement about the 10t
decimal place: the Casio proposes 2 and the HP insists on 7 (see table
1.28). This suggests that we should look at the iterates between 5 and
10 in detail (table 1.30).

Indeed, while for the 5% iterate both calculators agree at the 10th
decimal, they mildly disagree atthe 10th decimal for the 6t iterate. The
difference being 2 x 10711, which is so minute that one certainly finds
no reason to bother with it. Looking further atthe 10th iterate, however,
we see how this tiny disagreement has grown to 5 x 10~1%, which is still
so small that one is inclined to neglect it. But for our records let's note
that the disagreement has grown by an order of magnitude (a factor of
10).

When we go back to table 1.28 and now look at 15, 20, 25, 30,
35, ... iterations we seem to observe how the tiny little infection which
we noticed in the 10t decimal for the 6™ iterate has migrated through
all decimal places; i.e., after 40 iterations the initial tiny disagreement
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Evaluations Casio HP
5 0.1715191421 0.171519142100
6 0.5978201201 0.597820120080
7 1.319113792 1.31911379240
8 0.05627157765 | 0.056271577700
9 0.2155868393 0.215586839429
10 0.7229143012 0.722914301711

Table 1.30 : The critical iterations where the two calculators begin to show
signs of differing behavior.

has been amplified by a factor of 100!

But why do we say ‘seem to observe’? Well, comparing the Casio
and the HP we are inclined to trust the HP more because it works with
higher accuracy (two extra decimal places). In other words, we tend to
accept the HP answer for the 40th iterate and conclude that the Casio
is totally off. But this is a little premature.

If the Casio is wrong — and of course at least one of the two must
be totally wrong — we cannot assume that the error is due to a serious
flaw of its design. Rather, the failure is due to a principal mathematical
problem. And, of course, for that reason the HP is subject to the same
disease, but with a slight delay because of its higher accuracy. In
other words, all we can say for sure is that one of the two calculators
is totally wrong in its predictions despite the fact that the deterministic
process is very simple. But it is also very likely that both calculators
are off. This dramatic effect is the unavoidable consequence of finite
accuracy arithmetic and would produce the same results and dramatic
effects on multimillion-dollar supercomputers.

The minute differences in the two calculators, i.e., their different accura-
cies,accumulate sorapidly that the predictive power of the calculators (com-

puters) evaporates. But, believe it or not, this is still not the end of the story.

Things are even wilder than we have seen so far.

We now run our example of the quadratic dynamic law, p + rp(1 — p), for

r = 3 and the initial condition py = 0.01 (as before) on one calculator (Casio)
in two comparative runs. So what is the difference? If we keep all data the

same and use an identical calculator, the only thing we can possibly change

is the programming code in the algorithm. And there the only thing we can
possibly change is the way we evaluate the quadratic expression. And even
this almost ridiculously small change matters as demonstrated in table 1.31.

At first one doesn’t trust one’s eyes. Look at the 12t iterate. It is true.
There it creeps in; the virus of unpredictability strikes again. Hereafter we are

not surprised at all to see our prediction become completely unreliable.
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p +rp(1 — p) Versus Evaluations | p+7rp(1—p) | (1+7)p—rp*
(1+r)p —rp? 1 0.0397 00397
Two different implementations of 2 0.15407173 0.15407173
the same quadratic law on the same 3 0.5450726260 0.5450726260
calculator are not equivalent. We 4 1.288978001 1.288978001
compare the results: there is to- 5 0.1715191421 0.1715191421
tal agreement until the 11t iterate. 10 0.7229143012 | 0.7229143012
Then, in the 121 jterate a minute 11 1.323841944 1.323841944
disagreement — check the last three 12 0.03769529734 | 0.03769529724
places — 734 versus 724. 13 0.146518383 | 0.1465183826
14 0.5216706225 | 0.5216706212
15 1.270261775 1.270261774
20 0.5965292447 | 0.5965293261
25 1.315587846 1315588447
30 0.3742092321 | 0.3741338572
35 0.9233215064 | 0.9257966719
40 00021143643 | 0.0144387553
T 45 1.219763115 0.0497855318
able 1.31

If the first experiments didn’t convince you that chaos is unbeatable, the last
experiment should have taught you the lesson. With finite accuracy computing
there is no cure for the damaging effects of chaos. Predictability sooner or
later breaks down.

Now you may argue that such phenomena are very rare, or easy to detect or
to foresee. Wrong! Since chaos (= breakdown of predictability) has become
fashionable in the sciences, there has been literally a flood of papers demon-
strating that chaos is more like the rule in nature, while order (= predictability)
is more like the exception. But doesn’t this contradict the phenomenal suc-
cess of space missions, for example, the Voyager Il mission which left our
planetary system after 12 years of travel when it passed Neptune, only a few
kilometers off the predicted path? No, it does not. There are strong hints that
even the motion of celestial bodies is subject to the same phenomena — sooner
or later. . .Besides, since chaos has entered upon the scientific stage — and
despite its amazing historical roots in the work of Henri Poincaré at the turn of
last century, this is essentially an achievement made possible by the new pow-
ers provided to science by computers — there has been remarkable progress
in the deeper understanding of phenomena such as turbulence, fibrillation of
the heart, laser instabilities, population dynamics, climate irregularities, brain
function anomalies, etc.

Moreover, and this is truly fascinating and gives rise for a lot of hope
that chaos will not resist deeper understanding forever, it has recently become
clear that chaos likes to follow certain very stable patterns. This again was
discovered, strangely enough, by means of computers, which otherwise seem
so vulnerable to chaos. This is the main subject of chapter 11 where we

Sooner or Later
Predictability Breaks

Down

Chaos Will Not Resist
Deeper Understanding
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will discuss the ground-breaking work of Mitchell Feigenbaum, Siegfried
GroBmann and Stefan Thomae, and Edward Lorenz, as well as Robert May,
all of whom found order in chaos as well as routes from order into chaos.
The quadratic law p+ rp(1 — p) which we have explored so far is just one
of a universe of feedback systems which display very complicated behavior.
The expression 2% + ¢ is another example, only in a trivial sense, however.
If we carried out experiments analogous to that in table 1.28 for ¢ = —2, we
would observe exactly the same behavior. The reason is simply that the two
quadratic processes can be identified by means of a coordinate transformation,

i.e., they really are the same.

Using indices to identify iterates at different times (index n for input,
index n + 1 for output), we can write the two quadratic laws as

Prntl =DPn +70u(l —pp), n=20,1,2,3,... (1.9)
and

Tnp1=1224¢, n=0,1,2,3,... (1.10)
We now verify that with the setting of

1—g¢2 1+7r
1 and z, = 5 — TPn, (1.11)

the formulas (1.9) and (1.10) are identical. More precisely, we will show
that if

C =

147
To = —TPo (1.12)
2
holds, then
147
Tn = —TPn (1.13)
2
holds also for n = 1,2,3,.... In other words, the iteration of the

population dynamics model (1.9) and the iteration of quadratic formula
(1.11) using ¢ = (1 —1'2) /4 describe the same dynamical process. The
only difference is that the x- and p-values should be interpreted using
different scales (given by eqn. (1.13)). The picture is similar to a physics
experiment in which the temperature is measured by two physicists,
one using degrees centigrade and the other using degrees Fahrenheit.
The numbers they come up with are different yet there is a very simple
relation. A temperature of p degrees Fahrenheit corresponds to

)
= — — 3
z=4p—32)
degrees centigrade. This relation is analogous to egn. (1.13).

We have to examine whether p,1 from egn. (1.9) can be trans-
formed into x,,41 as in egn. (1.10) when we make use of egn. (1.11).

Equivalence of x* + c and
p +rpd+p)
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Figure 1.32 : Two quadratic iterators running in phase are tightly coupled by
the transformations indicated.

Formally, this is a proof by induction. If we apply egn. (1.11) to pn+1
we get

1+r
mn+1 = 2 _Tpn+1

and using eqgn. (1.9) for pp41

147
Tnp1 = — —7Pn — T2pn (1 — pn).

On the other hand, egn. (1.10) with z,, and ¢ transformed by egn. (1.11)
yields

1+7r 212
Tnt1 = 2 ~Tpn | + 4

Upon resolving the right-hand sides of both equations we see that they
are in fact the same, namely,

1+7r
TZP?L - 7‘(1 + T)pn + 5
Note that » = 3 corresponds to ¢ = —2. This explains, indeed,

that we may observe exactly the same behavior in both processes. Let
us verify the equivalence of the two processes with some examples.
If r = 3and py = 0.01,then ¢ = —2and zy = 1.97, according
to egn. (1.11). Computing x, for n = 10 on a Casio vyields 19 =
—0.1687429036. After transforming x1¢ according to egn. (1.11) we
obtain p1g = 0.7229143012, which is exactly the value we can read
from table 1.28 for the 10t iterate.
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If, however, we repeat the same for 50 rather than 10 iterations we
obtain x5y = 0.2310122906and psy = 0.2550655142 (according to
eqn. (1.11)), which is entirely different from the 50t jteration in table
1.28. This does not disprove the validity of the equivalence of the
two processes, but rather reaffirms our earlier finding that even two
different ways of numerical evaluation eventually lead to disagreeing
results, i.e., chaos has hit again.

Why Study Different
Quadratic Iterators?

A Wild Iterator
Becomes Very Tame

Why should we look at 2 + ¢ when the dynamics for iterators to this
formula are the same (up to some coordinate transformation) as for p+rp(1 —
p)? There are many different problems to be solved with quadratic iterations,
and indeed, in principle it does not matter which quadratic is taken because all
are equivalent. However, the mathematical formulation of these problems and
their solutions will be more illuminating (and perhaps less complex) depending
on the particular quadratic we pick. Therefore, in each case we may choose
the quadratic transformation which suits best the problem on hand.

Let us return for a moment to the question of whether there is an easy
answer to why we see chaotic behavior. It seems to be obvious that whenever
there is an inaccuracy in the feedback process, this error is amplified, i.e., the
error propagation builds up dramatically, due to the quadratic character of the
expressions. In other words, one might guess that the squaring operation is the
cause of the problem. Yes, that is indeed the case; but in a much more subtle
way than we might think. For the complete story, please refer to chapter 10.
But let us convince ourselves that squaring alone does not explain anything!
Let us look at two more simple experiments to illustrate the difficulties.

In our last experiment with the quadratic iterator z,41 = m% + ¢ we fixed

¢ = —2and started with zg = 1.97. How about ¢ = 1,forexample? Iteration
now yields: 1, -1, -1, -1, ... And, for another example, iteration forzy = 2
yields 2,2,2, ... In other words, we have found initial values for xq with

which the same wild iterator behaves perfectly tamely. We could demonstrate,
however, that this is the exception, i.e., for almost all g from [-2, +2] one
observes chaotic behavior. For example if we start with zg = 1.999999999,
i.e., with a tiny deviation from xy = 2, then we will have the familiar messy
behavior back again, provided we just allow sufficiently numerous iterates.
This already shows that the error analysis problem is not a straightforward
one, and this becomes even more apparent in our next experiment.

Let us now shift gears in our iterator by setting the control parameter to
¢ = ~1, rather than the previous value ¢ = —2. If squaring alone were the
secret to understand the lack of predictability, we should make very similar
observations. Let us run an iteration where we start with zg = 0.5 (see table
1.33). Here, we observe that after a number of iterations the process settles
down to a repetition of two values: 0 and —1. In fact, repeating the iteration
with other initial values, for example, £g = 1, or g = 0.75, or 2o = 0.25
yields the same final answer. The feedback process is now in a perfectly stable
mode.
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Seventeen Iterations of x2 — 1 Evaluations - g2 1

First seventeen iterates for the start- 1 0.5 —0.75

ing value ¢ = 0.5. 2 —-0.75 —0.4375
3 —0.4375 —0.80859375
4 —0.80859375 —0.3461761475
5 —0.3461761475 | —0.8801620749
6 —0.8801620749 | —0.2253147219
7 —0.2253147219 | —0.9492332761
8 —0.9492332761 | —0.0989561875
9 —0.0989561875 | —0.9902076730
10 —0.9902076730 | —0.0194887644
11 —0.0194887644 | —0.9996201881
12 —0.9996201881 | —0.0007594796
13 —0.0007594796 | —0.9999994232
14 —0.9999994232 | —0.0000011536
15 —0.0000011536 | —1.0000000000
16 —1.0000000000 | —0.0000000000
17 —0.0000000000 | —1.0000000000

Table 1.33

Stable Cycle in the Logistic
Iterator

The same stability should occur in the iteration of the logistic equation if
we choose the parameter r and the initial population pg appropriately.
Solving egn. (1.11) for 7 and p with the choice ¢ = —1 yields

r=+1—4c=+5,
Cl4r oz 1-2+V1-dc 1-2z+5
P="0r 7% 2/T—4¢ 25
Thus, for this parameter setting there is a stable cycle of two points
corresponding to * = 0 and x = —1, namely,
1 5
p= LEY5 o masg0797.
25
and
3 5
D= 5 = 1.17082039. ..
2V5

We have seen this kind of behavior already in the discussion ofthe MRCM,
where we always obtained a final image which was independent of the initial
image. This property is called stability, and is very desirable in many cases. In
these cases a process is predictable, and small errors along the way disappear
ordecay, i.e., they can be neglected. In other words, these are processes where
a computer with finite precision arithmetic is a perfect tool and cannot fail.
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Principle of Graphical

Iteration

The first steps in the graphical itera-
tion of Tn+1 = aZn(l ~ zn).

Graphical Iteration of
Feedback Processes

Figure 1.34

So far we have been able to detect the stable or unstable state of an iteration
by carefully monitoring the numerical values of competing runs ofthe feedback
process. For the particular class of quadratic processes, there is another way
to detect the different kinds of behavior, which is much more visual and
immediate.

We will restrict ourselves to the iteration

Tnt1 = azn(l — zp).

Note that if we consider the graph corresponding to thefunctiony = ax(1—~z),
we just obtain a parabola, which passes through the points (0, 0) and (1, 0)
independent of the choice of the parameter a. The vertex of the parabola,
which is always located at = 0.5, has height a/4. This quadratic iteration
again is equivalent to the logistic equation, or to Tp41 = x% + c. We use
it here because it produces iterates which always stay in the range from 0
to 1, provided the initial value zg is also in this range. There is an efficient
way to construct the sequence g, Z1, Z2,... by a ruler based on the graph of
the parabola leading to a nice graphical visualization of the iteration, called
graphical iteration.

To describe the iteration we plot the graph of y = ax(1 — z) and draw the
bisector (diagonal) (see figure 1.34). We start by marking xo on the z-axis.
Now we draw a vertical line segment from xo until we hit the graph. From
that point we draw a horizontal line segment until we hit the bisector. From
there we continue to draw a vertical line segment until we hit the graph, and
SO on.

Why does this procedure work? Simply because points on the bisector
have the same distance from both axes. With the aid of this method one can
literally see whether the elementary iterations are in the stable or unstable state.
Figure 1.35 shows the graphical iteration method for three different values of
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a in the stable range of the process. Fora = 1.45, we observe that the iteration
creates a staircase which runsinto the point of intersection between the graph
and the bisector. For @ = 2.75 the iteration generates a spiral which converges
to the point of intersection between the graph and the bisector. For a = 3.2
we see how the iteration determines cyclic behavior.

Figure 1.36 shows the iteration for @ = 4 and one starting value zo,
however different numbers of steps of the iteration. From left to right we
show the iteration after 10, 50 and 100 steps. Apparently the process does not
cometorest. Rather,itoccupies theentire available space. Thisphenomenon,
called mixing, is an indicator for the unstable state of the system. However, a
rigorous analysis has to use much more subtle means to distinguish genuine
instability from just a cycle of very high order. For example, what is the
difference between the cobwebs in figure 1.35 (@ = 3.2) and figure 1.36
(a =4)?

Mixing

The Equivalence of Graphical We have already shown that the iteration process for the logistic equa-
Iteration and the Population tion is equivalent to the iteration of 2+ ¢ (see page 53). Here we
Model show the equivalence to the iteration based on az(1 — ) as used in

the graphical method. Recall that
Pn+1 = pPn +1Pn(l = pn).

We show that this is the same as
Zpe1 = azp(l —2,)

when using the identification

r
wn=r+—1pn and a=7r+1.

(1.14)

(1.15)

{1.16)

We compute 41 using egn. (1.16) and the logistic iteration and then
check if the result agrees with the iteration using egn. (1.15). We have

. T o
nl = r+1p"+21—r+1
T
- 7np"—r—}-lp’zl

and on the other hand

(Pn + 100 (1 — pr))

r r
Tnt1 = aZy(l —2) = (r+1) mpn (1 B 7'+—1p”>
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r+1

= TPn — p?y

Thus we have that iterating pn41 = Pr + 7Pn(l — pr) is really the
same as iterating Zp41 = amn( 1-— mn). In fact, the iteration of any
quadratic polynomial is equivalent to the iteration of the logistic equa-
tion (with a properly chosen parameter). The proof of this assertion is

similar to the above derivation.
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Stable Behavior

Graphical iteration for three parame-
ter values leading to stable behavior.

a=1.45

a=2.75 a=3.2 Figure 1.35

Unstable Behavior

Unstable behavior for a = 4. The
same initial value is taken with dif-
fering numbers of iterations.

i

Figure 1.36

Analysis of Chaos is
Hard

The analysis of the quadratic feedback process is so difficult because the
stable and unstable states are interwoven in an extremely complicated pattern.
The feedback process can behave tamely or wildly depending solely on the
setting of the control parameter.

This is much like the case with the systems used to predict weather. There
are states where prediction is very reliable (like high pressure systems over the
Utah deserts); and then again there are situations where any prediction breaks
down, and where sophisticated multimillion dollar equipment and the brightest
minds are as successful in their prediction as any Tom, Dick or Harry would be
when predicting that the weather tomorrow will be the same as today. In other
words, one and the same system can potentially behave both ways and there
are transitions from one into the other. This is the core of the mathematics
or the science of chaos. The fact that this theme is also intimately connected
with fractals is the content of chapters 10 and 11. The best way to express this
relation is to say that fractal geometry is the geometry of chaos.



Chapter 2

Classical Fractals and Self-Similarity

Abnormal Monsters or
Typical Nature?

The art of asking the right questions in mathematics is more important than
the art of solving them.
Georg Cantor

Mandelbrot is often characterized as the father of fractal geometry. Some
people, however, remark that many of the fractals and their descriptions go
back to classical mathematics and mathematicians of the past like Georg Can-
tor (1872), Giuseppe Peano (1890), David Hilbert (1891), Helge von Koch
(1904), Waclaw Sierpinski (1916), Gaston Julia (1918), or Felix Hausdorff
(1919), to name just a few. Yes, indeed, it is true that the creations of these
mathematicians played a key role in Mandelbrot’s concept of a new geome-
try. But at the same time it is true that they did not think of their creations
as conceptual steps towards a new perception or a new geometry of nature.
Rather, what we know so well as the Cantor set, the Koch curve, the Peano
curve, the Hilbert curve and the Sierpinski gasket, were regarded as excep-
tional objects, as counter examples, as ‘mathematical monsters’. Maybe this
is a bit overemphasized. Indeed, many of the early fractals arose in the attempt
to fully explore the mathematical content and limits of fundamental notions
(e.g., ‘continuous’ or ‘curve’). The Cantor set, the Sierpinski carpet and the
Menger sponge stand out in particular because of their deep roots and essential
role in the development of early topology.

But even in mathematical circles their profound meaning had been some-
what forgotten, and they were seen as shapes, intended to demonstrate the
deviation from the familiar rather than to typify the normal. Then Mandelbrot
demonstrated that these early mathematical fractals in fact have many features
in common with shapes found in nature. Thus the title The Fractal Geometry
of Nature' of his book in 1982. In other words, we could say that Mandelbrot
turned the manifested mathematical interpretation and value of these fantastic

lFreeman, 1982.
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Cauliflower Self-Similarity

The self-similarity of an ordinary
cauliflower is demonstrated by dis-
section and two successive enlarge-
ments (bottom). The small pieces
look similar to the whole cauliflower
head.

Figure 2.1

inventions upside down. But in fact, he did much more. The best way to
describe his contribution is to say that, indeed, some characters, such as the
Cantor set, were already there. But he went on to develop the language into
which the characters could be embedded. In other words, he noticed that the
seemingly exceptional is more like the rule and then developed a systematic
language with words and sentences and grammar. According to Mandelbrot
himself, he did not follow a certain grand plan when carrying out this pro-
gram; but rather summarized, in a way, his complex — one is tempted to
say nomadic — scientific experiences in mathematics, linguistics, economics,
physics, medical sciences and communication networks, tomentionjust some
areas in which he was active.

Before we open our gallery of classical fractals and discuss in some de- Self-Similarity
tail several of these early masterpieces, let us introduce the concept of self-
similarity. It will be anunderlying theme in all fractals, more pronounced in
some of them and in variations in others. In a way the word self-similarity
needs no explanation, and at this point we merely give an example of a natural
structure with that property, a cauliflower. It is not a classical mathemati-
cal fractal, but here the meaning of self-similarity is readily revealed without
any math. The cauliflower head contains branches or parts, which when re-
moved and compared with the whole are very much the same, only smaller.
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These clusters again can be decomposed into smaller clusters, which again
look very similar to the whole as well as to the first-generation branches. This
self-similarity carries through for about three to four stages. After that the
structures are too small for a further dissection. In a mathematical idealiza-
tion the self-similarity property of a fractal may be continued through infinitely
many stages. This leads to new concepts such as fractal dimension which are
also useful for natural structures that do not have this ‘infinite detail’.

meter
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Figure 2.2 : The branches of the decimal tree leading to 357 are highlighted.

Self-Similarity in the
Decimal System

Although the notion of self-similarity is only some 20 years old there
are many historical constructions which make substantial use of its core idea.
Probably the oldest and most important construction in that regard is our famil-
iar decimal number system.” It is impossible to estimate where mathematics
and the natural sciences would be without this ingenious invention. We are so
used to the decimal number system that we are inclined to take it for granted.
However, it evolved after a long scientific and cultural struggle and it is very
closely related to the material from which fractals are made. It is also the pre-
requisite of the metric (measuring) system (for length, area, volume, weight,
etc.). Let us look at a meter’ stick, which carries markers for decimeters
(ten make a meter), centimeters (ten make a decimeter; a hundred make a
meter), and millimeters (ten make a centimeter; a thousand make a meter).
In a sense a decimeter together with its markers looks like a meter with its
markers, however, scaled down by a factor of 10. This is not an accident. It is

?Leonardo of Pisa, also known as Leonardo Fibonacci, helped introduce into mathematics the Indian-Arabic ciphers 0,1,2,3,
4,5,6,7,8, and 9. His best-known work, the Liber Abaci (1202; ‘Book of the Abacus’) spends the first seven chapters explaining
the place value, by which the position of a figure determines whether it is a unit, ten, hundred, and so forth, and demonstrating the
use of the numerals in arithmetical operations.

*The metric system is now used internationally by scientists and in most nations. It was brought into being by the French
National Assembly between 1791 and 1795. The spread of the system was slow but continuous, and, by the early 1970’s only a
few countries, notably the United States, had not adapted the metric system for general use. Since 1960 the definition of a meter
has been: 1 meter = 1,650,763.73 wavelengths of the orange-red line in the spectrum of the krypton-86 atom under specified
conditions. In the 1790’s it was defined as 1/10,000,000 of the circumference of the quadrant of the Earth’s circumference running
from the North Pole through Paris to the equator.
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in strict correspondence with the decimal system. When we say 357 mm, for
example, we mean 3 decimeters, 5 centimeters, and 7 millimeters. In other
words, the position of the figures determines their place value, exactly as in
the decimal number system. One meter has a thousand millimeters to it and
when we have to locate position 357 only a fool would start counting from
left to right from 1 to 357. Rather, we would go to the 3 decimeter tick mark,
from there to the 5 centimeter tick mark, and from there to the 7 millimeter
tick mark. Most of us take this elegant procedure for granted. But somebody
who has to convert miles, yards and inches can really appreciate the beauty of
this system. Actually finding a position on the meter stick corresponds to a
walk on the branches of a tree, the decimal number tree (see figure 2.2). The
structure of the tree expresses the self-similarity of the decimal system very
strongly. Similar trees reflect the self-similarity of many fractal constructions
considered in this chapter.
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2.1 The Cantor Set

Cantor (1845-1918) was a German mathematician at the University of Halle
where he carried out his fundamental work in the foundations of mathematics,
which we now call set theory.

Georg Cantor, 1845-1918

Figure 2.3

The Cantor set was first published* in 1883 and emerged as an example
of certain exceptional sets.’ It is probably fair to say that in the zoo of
mathematical monsters — or early fractals — the Cantor set is by far the
most important, though it is less visually appealing and more distant to an
immediate natural interpretation than some of the others. It is now understood
that the Cantor set plays a role in many branches of mathematics, and in fact,
in a very deep sense, in chaotic dynamical systems (we will touch upon this
property at least a bit), and is somehow hidden as the essential skeleton or
model behind many other fractals (for example, Julia sets, as we will see in
chapter 13).

The basic Cantor set is an infinite set of points in the unit interval [0,1].
That is, it can be interpreted as a set of certain numbers, as for example 0,1,
173, 2/3, 119, 2/9, 719, 8/9, 1/27, 2/27, ...Plotting these and all other points
(assuming we could know what they are) would not make much of a picture at
all. Therefore, we use a common little trick. Rather than plotting just points
we plot vertical lines all of the same length whose base points are exactly at all
the different points belonging to the Cantor set. By so doing, we are able to see
the distribution of these points a bit better. Figure 2.4 gives a first impression.
Rather than being able to actually see the Cantor set, it is probably much more
important to remember its classical construction.

*G. Cantor, Uber unendliche, lineare Punkimannigfaltigkeiten V, Mathematische Annalen 21 (1883) 545-591.
5The Cantor set is an example of a perfect, nowhere dense subset.
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The Cantor Set

The Cantor set represented by verti-
cal lines whose base points are ex- |
actly at all the different points be-
longing to the set.

Figure 2.4

Start with the interval [0,1]. Now take away the (open) interval (1/3,2/3),
i.e., remove the middle third from [0,1], but not the numbers 1/3 and 2/3.This
leaves two intervals [0,1/3] and [2/3,1] of length 1/3 each and completes a
basic construction step. Now we repeat, we look at the remaining intervals
[0,1/3] and [2/3,1] and remove their middle thirds, which yields four intervals
of length 1/9. Continue on in this way. In other words, there is a feedback
process in which a sequence of (closed) intervals is generated — one after the
first step, two after the second step, four after the third step, eight after the
fourth step, etc. (i.e., 2 intervals of length 1/3" after the n'h step). Figure
2.5 visualizes the construction.

Construction of the
Cantor Set

Initial Steps of the
Construction

Figure 2.5

What is the Cantor set? It is the set of points which remain if we carry
out the removal steps infinitely often. How do we explain infinitely often? Let
us try. A point, say z, is in the Cantor set if we can guarantee that no matter
how often we carry out the removal process, the point  will not be taken out.
Obviously 0,1,1/3,2/3,1/9,2/9,7/9,8/9,1/27,2/27,... are examples of such
points because they are the end points of the intervals which are created in
the steps; and therefore, they must remain. All these points have one thing in
common. Namely, they are related to powers of 3 — or rather, to powers of
1/3. One is tempted to believe that any point in the Cantor set is of this kind,
i.e., an end point of one of the small intervals generated in the process. This
conclusion is categorically wrong. We will not give the complete argument
but at least discuss the fact to some extent.

If the Cantor set were just the end points of the intervals of the generating
process, we could easily enumerate them as shown in figure 2.6.

That means, the Cantor set would be a countable set, but it is known to be
uncountable (see further below, page 73). That is, there is no way to enumerate

Interval End Points
Are in the
Cantor Set ...

...But That’s Not All
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stage 0

stage 1

stage 2

End Points of Intervals

[=F ]

Counting end points of intervals
from the Cantor set construction. In
2 3 stage k,k > 0 of the construction
process 2% new end points are added
4 5 6 7 and enumerated as shown.

Figure 2.6

the points in the Cantor set. Thus, there must be many more points which are
not end points. Can we give examples which are not end points? To name
such examples, we will use a simple, but far-reaching characterization of the
Cantor set, namely, by triadic numbers.

A Modification Using But let us first see what can be done with the more familiar decimal num-

Decimals

bers. Recall our discussion of the meter stick. Let us remove parts of the stick
in several stages (see figure 2.7). Start with the meter and cut out decimeter
number 5 in stage 1. This leaves 9 decimeters from each of which we take
away centimeter number 5 in stage 2. Next, in stage 3, we consider the re-
maining 81 centimeters and remove millimeter number 5 from each one. Then
we continue the process, going to tenth of millimeters in stage 4 and so on.
This clearly is very similar to the basic Cantor set construction. In fact, the set
of points that survive all stages in the construction, i.e., which are never taken
away, are a fractal which is also called a Cantor set.

It is instructive to relate this modified Cantor set construction to the decimal
number tree from figure 2.2. Removing a section of the meter stick corresponds
to pruning a branch of the tree. In stage 1 the main branch with label 5 is cut
off. In the following stages all branches with label 5 are pruned. In other
words, only those decimals are kept which do not include the digit 5. Clearly,

0
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In this meter stick the fifth decimeter (stage 1), the fifth centimeters (stage 2) and fifth millimeters

(stage 3) are removed. This yields the first three stages of a modified Cantor set construction.
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our choice to remove all fifth decimeters, centimeters, and so on is rather
arbitrary. We could just as well have preferred to take out all numbers with
a 6 in their decimal expansion, or even numbers with digits 3, 4, 5, and 6.
For each choice we get another Cantor set. However, we will never obtain the
classical Cantor set using this approach; this requires triadic numbers.
Triadic numbers are numbers which are represented with respect to base

Characterization of the

3. This means one only uses the digits 0,1, and 2. We give a few examples in Cantor Set
the following table.
Triadic Conversion i Decimal In Powers of 3 _ Triadic
Conversion of four decimal numbers 4 1-3'4+1.3° 11
into the triadic representation. 17 1-3242.3142.30 122

0:333... I 0.1

1-3-141-3-241-33+...

Table 2.8 0.5 1-371+1-37%4+1-3°+ 15 -

Triadic Numbers

Let us recall the essence of our familiar number system, the decimal
system, and its representation. When we write 0.32573 we mean

3-107 421072 4+5- 1073 +7- 1074 +3 - 1075,
In other words, any number x in [0,1] can be written as

r=a; 107 +a,- 102 +a3-107% + ..., (2.1)

where the ai,a9,as,...are numbers from {0,1,2, ,9}, the deci-
mal digits. This is called the decimal expansion of x, and may be infinite
(e.g., z = 1/3)orfinite (e.g., = 1/4). When we say the expansion
or representation is finite we actually mean that it ends with infinitely
(redundant) consecutive zeros.

You will recall that digital computers depend on binary expansions
of numbers. In computers 10 as base is replaced by 2. For example
0.11001 is

1-27'41.27240-27%40. 274+ 1.-27%

There is a little bit of ambiguity in these representations. For exam-
ple, we can write 2/10 in two ways 0.19 = 0.1999... or 0.2 =
0.2000 . . ., or in base 2 the number 1/4 can be represented as 0.001 =
0.00111 ... or 0.01 = 0.01000... , where the overlining means that
the respective digit (or digits) will be repeated ad infinitum.

Now we can completely describe the Cantor set by representing
numbers from [0, 1] in their triadic expansion, i.e., we switch to expan-

sions of = with respect to base 3, as in eqn. (2.2);
t=a; -3 4ay-3?4a3- 33 +ay- 37+, (22

Thus, here the a;, aq, a3, ... are numbers from {0, 1, 2}.
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Figure 2.9 : Visualization of binary expansions by a two-branch tree. In contrast
to real trees, we draw address trees with the root at the top. Any number in the
interval [0,1] at the bottom can be reached from the root of the tree by following
branches. Writing down the labels of these branches (0 for the left and 1 for
the right branch) in a sequence will yield a binary expansion of the chosen real
number. The tree has obvious self-similarity: any two branches at any node are
a reduced copy of the whole tree.

20 21~ _22

Ry

0 1/3 2/3 1

Figure 2.10 : A three-branch tree visualizes the triadic expansion of numbers
from the unit interval. The first main branch covers all numbers between 0 and
1/3. Following down the branches all the way to the interval and keeping note
of the labels 0, 1, and 2 for choosing the left, middle, or right branches will
produce a triadic expansion of the number in the interval which is approached
in this process.
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Let us write some of the points of the Cantor set as triadic numbers: 1/3
is 0.1 in the triadic system, 2/3 is 0.2, 1/9 is 0.01, and 2/9 is 0.02. In general
we can characterize any point of the Cantor set in the following way.

Fact. The Cantor set C is the set of points in [0,1] for which there is a triadic
expansion that does not contain the digit ‘1°.

This number theoretic characterization eliminates the problem of the existence
of a limit for the geometric construction of the Cantor set.

The above examples 2/3 and 2/9 are points in the Cantor set according to
this statement, since their triadic expansions 0.2 and 0.02 do not contain any
digits ‘1’. However, the other two examples 1/3 and 1/9 seem to contradict
the rule, their expansions 0.1 and 0.01 clearly show a digit ‘I’. Yes, that is
correct; but remember that we have ambiguity in our representations, and 1/3
can also be written as 0.02222. Therefore, it belongs. But then, you may ask,
what about 1/3 + 1/9? This is a number from the middle third interval which
is discarded in the first construction step of the Cantor set. It has a triadic
expansion 0.11, and can’t we also write this in different form and thus get into
trouble? Yes, indeed, 1/3 + 1/9 = 0.10222; but as you see, there appears
a digit ‘1’ no matter how we choose to represent that number in the triadic
system. Thus, it is out and there is no problem with our description.

Moreover, we can now distinguish points in C which are end points of
some small interval occurring in the process of the feedback construction
from those points which are definitely not. Indeed, end points in this sense
just correspond to numbers which have triadic expansion ending with infinitely
many consecutive 2’s or 0’s. All other possibilities, as for example

0.020022000222000022220000022222 . . .

or a number in which we pick digits 0 and 2 at random will belong to the
Cantor set but are not end points, and those are, in fact, more typical for the
Cantor set. In other words, if one picks a number from C at random, then
with probability 1, it will not be an end point. By this characterization of the
Cantor set we can understand that, in fact, any point in C can be approximated
arbitrarily closely by other points from C, and yet C itself is a cloud of points.
In other words, there is nothing like an interval in C (which is obvious if we
recall the geometric construction, namely, the removal of intervals).

Thus, there are infinitely many points in the Cantor set that have a ter-
minating representation in base 3. Let us add a side remark about a curious
result regarding the representation of points of the Cantor set by decimal ex-
pansions. We may ask how many points there are in the Cantor set that have
a terminating decimal expansion. The answer is quite astonishing;® there are
exactly 14 such numbers, namely,

131 3 7 9 1 3 9 1327 31 37 39

447107107107 107 40 40° 40’ 40’ 40’ 40 40" 40°

Distinguishing End
Points from Others

How About Decimal
Expansions?

See C. R. Wall, Terminating decimals in the Cantor ternary set, Fibonacci Quart. 28, 2 (1990) 98-101.
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Let us return for a moment to the intuitive geometric construction of the
Cantor set by removing middle thirds in each step from the unit interval [0,1].
After the first step, we have two parts; one is left and one is right. After the
second step, each of these in turn splits into two parts, a left one and a right
one, and so on. Now we design an efficient labeling procedure for each part
created in the steps. The two parts after the first step are labeled L and R for
left and right. The four parts after the second step are labeled LL, LR, RL,
RR, i.e., the L part from step one is divided into an L and an R part, which
makes LL and LR, and likewise with the R part. Figure 2.11 summarizes the
first three steps.

Addresses and the
Cantor Set
L
LL LR
4 o £
- - - .|

Cantor Set Addresses

R
RL RR
4 5 g o
I o™ C o

Addresses of Intervals
Versus Addresses of
Points

Binary Tree for the
Cantor Set

Figure 2.11

As a result, we are able to read from a label with 8 letters like LLRLRRRL
exactly which of the 28 parts of length 1/3% we want to pick. It is important
when reading this address, however, to remember the convention that we
interpret from the left to right, i.e., letters have a place value according to their
position in a word much like the numerals in the decimal system.

Finite string addresses such as LLRLRRRL identify a small interval from
the construction of the Cantor set. The longer the address, the higher the stage
of the construction, and the smaller the interval becomes. To identify points
in the Cantor set, such addresses obviously are not sufficient, as in each such
interval, no matter how small it is, there are still infinitely many points from
the Cantor set. Therefore we need infinitely long address strings to precisely
describe the location of a Cantor set point. Let us give two examples. The first
one is the point 1/3. It is in the left interval of the first stage, which has address
L. Within that it is in the right interval of the second stage. This is [2/9, 1/3]
with address LR. Within that the point is again in the right subinterval with
address LRR, and so on. Thus, to identify the position of the point exactly
we write down the sequence of intervals from consecutive stages to which the
point belongs: LR, LRR, LRRR, LRRRR, and so on. In other words, we
can write the address of the point as the infinite string LRRRR..., or using
a bar to indicate periodic repetition LR. The point 2/3 is in the right interval
of the first stage. Within that and all further stages it is always in the left
subinterval. Thus, the address of 2/3 is RLLL ..., or RL.

Another interesting way to look at the situation which is established by this
systematic labeling is demonstrated in figure 2.12, where we see an infinite
binary tree the branches of which repeatedly split into two branches from top
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Address Tree

Addresses for points of the Cantor
set form a binary tree.

0 1/3 2/3 1

Figure 2.12

to bottom. What is the connection between the tree and the Cantor set? Well,
the tree consists of nodes and branches. Each level of the tree corresponds to
a certain step in the Cantor set construction; and in this way, it is actually a
genealogical tree. In other words, we can compare this with a cell division
process, and the tree tells us exactly from where an individual cell of some
future generation is derived. This is quite nice already, but there is much more
to this simple idea. For example, rather than choosing the alphabet {L, R} we
can take another two-letter alphabet and carry out a systematic replacement.
Why not pick 0 and 2 as an alphabet, i .e., replace any L by a0 and any R by a 2.
Then we obtain strings of digits like 022020002 in place of LRRLRLLLR.
You have surely guessed what we are up to. Indeed, that string of digits can
be interpreted as a triadic number by just putting a decimal point in front of
it, i.e., 0.022020002. Thereby, we have demonstrated the connection between
the triadic representation of the Cantor set and the addressing system. In fact,
this provides an argument for the validity of the triadic characterization. In
other words, if we want to know where in the Cantor set a certain number is
located — up to a certain degree of precision — we just have to look at its
triadic expansion and then interpret each digit O as L and each digit 2 as R.
Then, looking up the resulting address, we can find the part of the binary tree
in which the number must lie.

The relation of L, R addresses with triadic numbers might seem to suggest L and R Are Not
going even one step further, namely, to identify L and R with 0 and 1,1.e., with 0and 1
binary numbers. This is, however, somewhat dangerous. Let us consider again
the example point 1/3. It is represented by the address string LR. This would
correspond to the binary number 0.01, which as a binary number, is identical
to 0.1. But translated back 0.1 = 0.1000... = 0.10 corresponds to RL,
which in the Cantor set is the point 2/3! Clearly, this identification produces
a contradiction. In other words, triadic numbers, but not binary numbers, are
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natural to the Cantor set. Or to put it another way, two-letter-based infinite
strings are natural for the Cantor set, but these cannot be identified with binary
numbers, despite the fact that they are strings made up of two letters/digits.

We can now see that the cardinality of the Cantor set must be the same The Cardinality of
as the cardinality of the unit interval [0,1]. We start with the interval the Cantor Set
[0, 1] and show how each point in it corresponds to one point in the

Cantor set.

¢ Each point in the interval has a binary expansion.
e Each binary expansion corresponds to a path in the binary tree for

binary numbers.

e Each such path has a corresponding path in the triadic tree for the

Cantor set.

e Each path in the triadic tree of the Cantor set identifies a unique point
in the Cantor set by an address in triadic expansion.

Therefore, for each number in the interval, there is a corresponding
point in the Cantor set. For different numbers there are different points.
Thus, the cardinality of the Cantor set must be at least as large as
the cardinality of the interval. On the other hand, it cannot exceed
this cardinality, because the Cantor set is a subset of the interval.
Therefore, both cardinalities must be the same.

Self-Similarity

The Cantor set is truly complex, but is it also self-similar? Yes, indeed, if
one takes the part of C which lies in the interval [0,1/3], for example, we can
regard that part as a scaled down version of the entire set. How do we see that?
Let us take the definition of the Cantor set collecting all points in [0,1] which
admit a triadic representation not containing digit 1. Now for every point, say

=1 x3 '+ x3 2 +a3x3 P+ x34+...,

(with a; € {0,2})in the Cantor set we find a corresponding one in [0,1/3] by
dividing £ by 3,ie.,

§=0><3—1+a1x3‘2+a2x3—3+a3x3—4+...

Indeed, if x = 0.200220. .. and we multiply by 1/3 = 0.1, that means that
we just shift the binary digits one place to the right and obtain 0.0200220...,
which is in C again. Thus, the part of the Cantor set present in [0,1/3] is an
exact copy of the entire Cantor set scaled down by the factor 1/3 (see figure
2.13). For the part of C which lies in the interval [2/3,1], essentially we can do
the same calculation (we only have to include the addition of 2/3 = (.2). In the
same way, any subinterval in the geometric Cantor set construction contains
the entire Cantor set scaled down by an appropriate factor of 1/3%. In other
words, the Cantor set can be seen as a collection of arbitrarily small pieces,
each of which is an exact scaled down version of the entire Cantor set. This is
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Self-Similarity of the Cantor

> )

The Cantor set is a collection of two

exact copies of the entire Cantor set O -
scaled down by the factor 1/3.

Figure 2.13

what we mean when we say the Cantor set is self-similar. Thus, taking self-
similarity as an intuitive property means that self-similarity here is absolutely
perfect and is true for an infinite range. Note that in our discussion of self-
similarity we have carefully avoided the geometrical model of the Cantor set.
Instead, we have exploited the number theoretic representation.

Note that the scaling property ofthe Cantor set corresponds to the following
invariance property. Take a point from C and multiply it by 1/3. The result
will be in C again. The same is true if we first multiply by 1/3 and then add
2/3. This is apparent from the triadic characterization, and it will be the key
observation for chapter 5.

Before we continue our introduction to classical fractals with some other
examples, let us touch one more property of the Cantor set which reveals an
important dynamic interpretation and an amazing link with chaos.

Let us look at a mathematical feedback system defined in the following Cantor Set as Prisoner

way. If z is an input number, then the output number is determined by the Set
following conditional formula (2.3).
3x if <05
v { ~3z+3 if > 0.5 23

In other words, the output is evaluated to be 3z if z < 0.5 and is —3z + 3 if
z > 0.5.

Starting with an initial point zg, the feedback process defines a sequence
o, 1,2, %3, ... The interesting question then is: what is the long-term be-
havior of such sequences? For many initial points zg the answer is very easy to
derive. Take for example a number zg < 0. Then z; = 3z¢,and z; < 0. By
induction it follows that all numbers z; from this sequence are negative, and,
thuszy, = 3%x¢. This sequence then grows negatively without any bound, and
ittends to negativeinfinity, —oo. Let us call a sequence with such a long-term
behavior an escaping sequence and the initial point g an escaping point.

Let us now take xg > 1. Then z1 = —3x¢+3 < 0, and again the sequence
escapes to —oo. Butnot all points are escaping points. Forexample, for zg = 0
we have that all succeeding numbers in the sequence are also equal to zero.
We conclude, that any initial point g, which at some stage goes to zero will
remain there forever, and thus is not an escaping point. Such points we call
prisoners. So far we have found that all prisoner points must be in the unit
interval [0, 1]. This leads to the interesting question: which points in the unit
interval will remain and which will escape? Let us look at some examples.
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) X1 g Zz3 T4 P/E

0 0 0 0 0 prisoner
1/3 1 0 0 0 prisoner
9 13 1 0 0 prisoner
12 32 =372 =912 -27/2 escapee
5 3,5 65 -3/5 —9/5 escapee

Escaping Points and Intervals

Figure 2.14

Clearly the entire (open) interval (1/3, 2/3) escapes because when 1/3 <
zo < 2/3 wehave x; > 1 and z3 < 0. But then every point which eventually
lands in that interval will also escape under iteration. Figure 2.14 illustrates
these points and reveals the Cantor set construction for the points which will

remain.

Fact. The prisoner set P for the feedback system given by eqn. (2.3) is the
Cantor set, while all points in [0, 1] which are outside the Cantor set belong
to the escape set E.

This is a remarkable result and shows that the study of the dynamics of feedback
systems can provide an interpretation for the Cantor set. This close relation
between chaos and fractals will be continued in chapter 13.



76 2 Classical Fractals and Self-Similarity

2.2 The Sierpinski Gasket and Carpet

Our next classical fractal is about 40 years younger than the Cantor set. It
was introduced by the great Polish mathematician Waclaw Sierpinski’ (1882
1969) in 1916.

Waclaw Sierpinski, 1882-1969

Figure 2.15

Sierpinski was a professor at Lvov® and Warsaw. He was one of the
most influential mathematicians of his time in Poland and had a worldwide
reputation. In fact, one of the moon’s craters is named after him.

The basic geometric construction of the Sierpinski gasket goes as follows.
We begin with a triangle in the plane and then apply a repetitive scheme of
operations to it (when we say triangle here, we mean a blackened, ‘filled-in’
triangle). Pick the midpoints of its three sides. Together with the old vertices
of the original triangle, these midpoints define four congruent triangles of
which we drop the center one. This completes the basic construction step.
In other words, after the first step we have three congruent triangles whose
sides have exactly half the size of the original triangle and which touch at
three points which are common vertices of two contiguous triangles. Now
we follow the same procedure with the three remaining triangles and repeat

"W. Sierpinski, Sur une courbe dont tout point est un point de ramification, C. R. Acad. Paris 160 (1915) 302, and W. Sierpinski.
Sur une courbe cantorienne qui contient une image biunivoquet et continue detoute courbe donnée C. R. Acad. Paris 162 (1916)
629-632.

$Lvov, Ukrainian Lviv, Polish Lwéw, German Lemberg, city and administrative center in the Ukrainian Republic. Founded in
1256 Lvov has always been the chief center of Galicia. Lvov was Polish between 1340 and 1772 until the first partition, when
it was given to Austria. In 1919 it was restored to Poland and became a world-famous university town hosting one of the most
influential mathematics schools during the 1920’s and 1930’s. In 1939 it was annexed by the Soviets as a result of the Hitler-Stalin
Pact, and the previously flourishing Polish mathematics school collapsed. Later several of its great scientists were victims of Nazi
Germany.
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Sierpinski Gasket

The basic construction steps of the
Sierpinski gasket.

Figure 2.16

Sierpinski Pattern

Escher’s studies of Sier-
pinski gasket-type patterns on the
twelfth-century pulpit of the Rav-
ello cathedral, designed by Nicola
di Bartolomeo of Foggia. Water-
color, ink, 278 by 201 mm. ©1923
M. C. Escher / Cordon Art— Baarn —
Holland.

Figure 2.17

the basic step as often as desired. That is, we start with one triangle and then
produce 3,9, 27, 81, 243,... triangles, each of which is an exact scaled down
version of the triangles in the preceding step. Figure 2.16 shows a few steps

of the process.

The Sierpinski gasket’ is the set of points in the plane which remain if one
carries out this process infinitely often. It is easy to list some points which
definitely belong to the Sierpinski gasket, namely, the sides of each of the

triangles in the process.

The characteristic of self-similarity is apparent, though we are not yet

“The Sierpinski gasket is sometimes also called the Sierpinski triangle.
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LRTT

LRTT denotes a subtriangle in
the Sierpinski gasket which can be
found following the left, right, top,
top subtriangles.

Figure 2.18

Spider-Like Tree

This tree represents not only the
structure of the Sierpinski gasket but
also its geometry.

Figure 2.19

prepared to discuss it in detail. Itis built into the construction process, i.e., each
of the three parts in the &kt step is a scaled down version — by a factor of
2 — of the entire structure in the previous step. Self-similarity, however, is
a property of the limit of the geometrical construction process, and that will
be available to us only in chapter 5. In chapter 8 we will explain how the
Sierpinski gasket admits a number theoretic characterization from which the
self-similarity follows as easily as for the Cantor set.

Similar to our above discussion of the Cantor set we can introduce an Addresses for the

addressing system for the subtriangles (or points) of the Sierpinski gasket. Sierpinski Gasket
Here we must use three symbols to establish a system of addresses. If we take,
for example, L (left), R (right) and T (top) we obtain sequences like LRTT or
TRLLLTLR and read them from left to right to identify subtriangles in the
respective construction stage of the Sierpinski gasket. For example, LRTT
refers to a triangle in the 4t generation which is obtained in the following way.
Pick the left triangle in the first generation, then the right one therein, then the
top one therein, and finally again the top one therein (see figure 2.18). We
will discuss the importance of addresses for the Sierpinski gasket in chapter 6.
They are the key to unchaining the chaos game introduced in chapter 1. We
should not confuse, however, our symbolic addresses with triadic numbers.
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step 0

step 2

Sierpinski Carpet

The basic construction steps of the
Sierpinski carpet.

Figure 2.20

The Sierpinski Carpet

There are several ways to associate trees with symbolic addresses. A
particular construction is based on the triangles which are taken away in the
construction process. The nodes of the tree are the centers of these triangles.
The branches of the tree grow generation by generation, as shown in figure
2.19. Observe that some of the branches touch when we go to the limit. For
example, the branches corresponding to LT77T... and TLLL ... touch in
point A.

Sierpinski has added another object to the gallery of classical fractals, the
Sierpinski carpet, which at first glance just looks like a variation of the known
theme (see figure 2.20). We begin with a square in the plane. Subdivide into
nine little congruent squares of which we drop the center one, and so on. The
resulting object which remains if one carries out this process infinitely often
can be seen as a generalization of the Cantor set. Indeed, if we look at the
intersection of a line which is parallel to the base of the original square and
which goes through the center we observe precisely the construction of the
Cantor set. We will see in section 2.7 that the complexities of the carpet and
the gasket may at first look essentially the same, but there is in fact a whole
world of a difference between them.



80 2 Classical Fractals and Self-Similarity

2.3 The Pascal Triangle

Blaise Pascal (1623-1662) was a great French mathematician and scientist.
When only twenty years old, he built some ten mechanical machines for the
addition of integers, a precursor of modern computers. What is known as
the arithmetic triangle or Pascal’s triangle, was not, however, his discovery.
The first printed form of the arithmetic triangle in Europe dates back to 1527.
A Chinese version of Pascal’s triangle had already been published in 1303
(see figure 2.24). Pascal, however, used the arithmetic triangle to solve some
problems related to chances in gambling, which he had discussed with Pierre
de Fermat in 1654. This research later became the foundations of probability
theory.

Blaise Pascal, 1623-1662

Figure 2.21

The Arithmetic Triangle The arithmetic triangle is a triangular array of numbers composed of
the coefficients of the expansion of the polynomial (1 + x)". Here n
denotes the row starting from = 0. Row n hasn + 1 entries. For
example, for n = 3 the polynomial is

(1+2)® =1+ 3z + 32+ 2*.
Thus, row number 3 reads 1, 3,3, 1 (see figure 2.22).

There are two ways to compute the coefficients. The first one
inductively computes one row based on the entries of the previous
row. Assume that the coefficients ay, ..., a, in row n are given:

(1+2)" =ag+ a1z + -+ az™,

and the coefficients by, . . . , b, 1 of the following row are required:

(1 + x)n-{—l = b() + blx +-- bn+1-rn+l»
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These are directly related to the known coefficients aq, . . .

142" = 1+2)"(1+7)
(ap + a1z + - +apz™)(1 + )
= agt+ a1z + -+ apz”

+ apz + a12% + -+ + apz™t?
ao + (ao t+a1)z + -

sy’

Pascal’s Triangle

The first eight rows of Pascal’s trian-
gle in a hexagonal web.

Figure 2.22

Color Coding

Color coding of even (white) and
odd (black) entries in the Pascal tri-
angle with eight rows.

Figure 2.23

+ (an—1 + an)z™ + anz™tl,
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Chinese Arithmetic Triangle

Already in 1303 an arithmetic tri-
angle had appeared in China at the
front of Chu Shih-Chieh’s Ssu Yuan
Yii Chien which tabulates the bi-
nominal coefficients up to the eighth
power.

Figure 2.24

R 2 # X # &

Comparing coefficients we obtain the result

bO = ao,
by = ax_1+ax fork=1,...,n,
bn+1 = Qp.

The recipe to compute the coefficients of a row is thus very simple.
The first and last numbers are copied from the line above. These will
always be equal to 1. The other coefficients are just the sum of the
two coefficients in the row above. In this scheme it is most convenient
to write Pascal’s triangle in the form with the top vertex centered on a
line above it as shown in figure 2.22.

For computing small numbers of rows from Pascal's triangle the
inductive method as outlined above is quite satisfactory. However,
sometimes it is of advantage to have a direct approach available. It is
based on the binomial theorem, which states

!
n. n—k,k

()t =3 Ry
22 Kl(n — k)!

where the notation n! is ‘factorial n’' and defined as
nl=1-2---(n—1)-n
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Pascal’s Triangle in Japan
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Figure 2.25

for positive integers 2 and 0! = 1. The coefficients in the polynomial
are called binomial coefficients."

Applying the formula to (1 + )™ we immediately obtain the kth
coefficient by (k runs from 0 to n) of row number n of Pascal’s triangle

via
be = n! _nn—-1)---(n-k+1)
TR -k 1.2k '
For example, the coefficientfor k = 3 inrow n = 7 is
7-6-5
3=~

see the fourth entry in the last row in figure 2.22.

Another identity is easy to derive: the sum of all coefficients in row
number n of Pascal’s triangle is equal to 2™, which is seen by setting
z =y = 1 in the binomial formula.

'"The notion of binomial coefficient was introduced in 1544 by Michael Stifel, who also showed how to calculate (1 + z)7+1
from (1 -+ x)™. The notation #! (factorial n) for the product 1 -2 -3 -+ -n was introduced by Christian Kramp in an algebra book
around 1808. Euler wrote [n}; Gauss used the notation 7 (n).
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Color coding of even and odd entries in the Pascal triangle with 16, 32, and 64 rows.

Figure 2.26 :
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The Pascal Triangle

2.3

4=
L= .rm.lh

JOO0000

Figure 2.27 : Color coding the Pascal triangle. Black cells denote divisibility by 3 (top left), by 5 (top right) and by

9 (bottom).
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To keep order we have put the first eight rows of a Pascal triangle into
a hexagonal web (see figure 2.22). Now let us color code properties of the
numbers in the triangle. For example, let us mark each hexagonal cell which
is occupied by an odd number with black ink, i.e., the even ones are left white.
Figure 2.23 shows the result.

It is worthwhile to repeat the experiment with more and more rows (see
figure 2.26). The last image of that series already looks very similar to a
Sierpinski gasket. Is it one? We have to be very careful about this question
and will give a first answer in chapter 3. These number theoretic patterns are
just one of an infinite variety of related ones. You will recall that even/odd just
means divisible by 2 or not. Now, how do the patterns look when we color
code divisibility by 3,5,7,9, etc., by black cells and nondivisibility by white
cells? Figure 2.27 gives a first impression.

Each of these patterns has beautiful regularities and self-similarities which
describe elementary number theoretic properties of the Pascal triangle. Many
of these properties have been observed and studied for several centuries. The
book by B. Bondarenko,'" lists some 406 papers by professional and amateur
mathematicians over the last three hundred years. "

"' B. Bondarenko. Generalized Triangles and Pyramids of Pascal; Their Fractals, Graphs and Applications, Tashkent, Fan,
1990, in Russian.

"In chapter 8 we will demonstrate how the fractal patterns and self-similarity features can be deciphered by the tools which are
the theme of chapter 5.



The Koch Curve

87

2.4 The Koch Curve

Helge von Koch was a Swedish mathematician who, in 1904, introduced what
is now called the Koch curve.” Fitting together three suitably rotated copies
of the Koch curve produces a figure, which for obvious reasons is called the
snowflake curve or the Koch island (see figures 2.29 and 2.30).

sidérer comme positif le c6té laissé & gauche quand on parcourt le segment
dans le sens positif. Pour abréger, nous désignons par & cette opération
au moyen de laquelle on passe d'un segment rectiligne AB & la ligne po-
lygonale ACDERB déviant de AB vers le cbté positif.

o]

A& < A

Fig. 2.

2, Partons maintenant d'une ligne droile déterminée AB, le sens de
A vers B éant considéré comme positif (fig. 2). Par l'opération £, AB
est remplacée par la ligne brisée ACDEB, les segments AC,CD, DE, EB
étant égaux entre eux et leur sens positif étant respectivement celui de 4
vers , de C vers D, de D vers E, de E vers B.

Effectuons I'opération € sur chacun de ces segments; la ligne ACDER
sera remplacée par la ligne brisée AFGHCIKLDMNOEPQRB composée
de 16 segments égaux AV, FG ete.

Koch’s Original Construction

Excerpt from von Koch’s original
1906 article.

Figure 2.28

Little is known about von Koch, whose mathematical contributions were
certainly not in the same category as those of the stars like Cantor, Peano,
Hilbert, Sierpinski or Hausdorff. But in this chapter on classical fractals,
Koch’s construction must have its place simply because it leads to many in-
teresting generalizations and must have inspired Mandelbrot immensely. The
Koch curve is as difficult to understand as the Cantor set or the Sierpinski
gasket. However, the problems with it are of a different nature. First of all
— as the name already expresses — it is a curve, but this is not immediately

BH. von Koch, Sur une courbe continue sans tangente, obtenue par une construction géometrique élémentaire, Arkiv for
Matematik 1 (1904) 681-704. Another article is H. von Koch, Une méthode géométrique élémentaire pour I’étude de certaines
questions de la théorie des courbes planes, Acta Mathematica 30 (1906) 145-174.
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The Koch Snowflake U
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Figure 2.29

Some Natural Flakes

The Koch snowflake obviously has
some similarities with real flakes,
some of which are pictured here.

Figure 2.30

clear from the construction. Secondly, this curve contains no straight lines or
segments which are smooth in the sense that we could see them as a carefully
bent line. Rather, this curve has much of the complexity which we would see
in a natural coastline, folds within folds within folds, and so on.

Here is the simple geometric construction of the Koch curve. Begin with
a straight line. This initial object is also called the initiator. Partition it into
three equal parts. Then replace the middle third by an equilateral triangle and
take away its base. This completes the basic construction step. A reduction
of this figure, made of four parts, will be reused in the following stages. It is
called the generator. Thus, we now repeat, taking each of the resulting line
segments, partitioning them into three equal parts, and so on. Figure 2.31
illustrates the first steps. Self-similarity is built into the construction process,
i.e., each of the four parts in the k™ step is again a scaled down version — by
a factor of 3 — of the entire curve in the previous (k — 1)% step.

Actually, Koch wanted to provide another example for a discovery first
made by the German mathematician Karl Weierstra, who in 1872 had pre-
cipitated a minor crisis in mathematics. He had described a curve that could
not be differentiated, i.e., a curve which does not admit a tangent at any of its
points. The ability to differentiate (i.e., to calculate the slope of a curve from
point to point) is a central feature of calculus, which was invented indepen-

Geometric
Construction
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dently by Newton and Leibniz some 200 years before Weierstral. The idea
of slope is a fairly intuitive one and goes hand in hand with the notion of a
tangent (see figure 2.32).

If a curve has a corner, then there is a problem. There is no way to fit a
unique tangent. The Koch curve is an example of a curve which in a sense is
made out of corners everywhere, i.e. there is no way to fit a tangent to any of
its points.

It is almost obvious how one can generalize the construction to obtain a
whole universe of self-similar structures. Such a Koch construction is defined
by an initiator, which may be a collection of line segments, and a generator,
which is a polygonal line, composed of a number of connected line segments.
Beginning with the initiator, one replaces each line segment by a properly
scaled down copy of the generator curve. Here it is necessary to carefully
match end points of the line segment and the generator. This procedure is

Tangents of Curves

At corners the tangent of a curve is
not uniquely defined.

- — Figure 2.32
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Comparing Koch Curve
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Figure 2.33

repeated ad infinitum. In practice, of course, one stops as soon as the length
of the longest line segment in the graph is below the resolution of the graphics
device. Whether or not the Koch construction yields a converging sequence of
images or even curves depends on the choice of initiator and generator. Figure
2.34 shows an example.

Let us return to the original Koch curve and discuss its length. In each
stage we obtain a curve. After the first, we are left with a curve which is made
up of four line segments of the same length, after the second step we have
4 x 4, and then 4 x 4 x 4 line segments after the third step, and so on. If the
original line had length L, then after the first step a line segment has length
L x 1/3, after the second step we have L x 1/32, then L x 1/33, and so on.
Since each of the steps produces a curve of line segments, there is no problem
in measuring their respective lengths. After the first step it is 4 x L x 1/3,
then 42 x L x 1/32, and so on. After the k' step, itis L x 4¥ /3%, We observe
that from step to step the length of the curves grows by a factor of 4/3.

Now there are several problems. First of all, the Koch curve is the object
which one obtains if one repeats the construction steps infinitely often. But
what does that mean? Next, even if we could answer this question, why is it
a curve which comes out? Or, why is it that the curves in each step do not
intersect themselves?

In figure 2.33 we see two curves which we can hardly distinguish. But
they are different. The top one shows the result of the construction after 5
steps, while the other curve shows the result after 20 steps. In other words,
since the length of the individual line segments is 1/ 3k where k isthe number
of steps, it is clear that any of the changes in the construction are soon below
visibility unless one works under a microscope. Thus, for practical purposes,
one is tempted to be satisfied with a display of something like the 10* step,
or whatever is appropriate to fool the eye. But such an object is not the Koch
curve. It would have finite length and would still show its straight line con-

The Length of the
Koch Curve
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Another Koch Construction

A different choice of initiator and
generator produces another fractal
with self-similarities.

step 0 step 1

initiator generator

step 2

step 4

Figure 2.34

struction segments under sufficient magnification. It is of crucial importance
to distinguish between the objects which we obtain at any (single) step in
the construction and the final object. We will pick up this difficulty, which
of course is also present in the previous classical fractals, in the following

chapters.
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2.5 Space-Filling Curves

Talking about dimension in an intuitive way, we perceive lines to be typical
for one-dimensional objects and planes as typical for two-dimensional objects.
In 1890 Giuseppe Peano'® (1858-1932) and immediately after that in 1891,
David Hilbert" (1862-1943), discussed curves which live in a plane and which
dramatically demonstrate that our naive idea about curves is very limited.'®
They discussed curves which ‘fill’ a plane, i.e., given some patch of the plane,
there is a curve which meets every point in that patch. Figure 2.35 indicates
the first steps of the iterative construction of Peano’s original curve.

In Nature the organization of space-filling structures is one of the funda- Space-Filling
mental building blocks of living beings. An organ must be supplied with the Structures in Nature
necessary supporting substances such as water and oxygen. In many cases
these substrates will be transported through vessel systems that must reach
every point in the volume of the organ. For example, the kidney houses three
interwoven tree-like vessel systems, the arterial, the venous, and the urinary
systems (see the color plates). Each one of them has access to every part of
the kidney. Fractals solve the problem of how to organize such a complicated
structure in an efficient way. Of course, this was not what Peano and Hilbert
were interested in almost 100 years ago. It is only now, after Mandelbrot’s
work, that the omnipresence of fractals becomes apparent.

The Peano curve is obtained by another version of the Koch construction. Construction with
We begin with a single line segment, the initiator, and then substitute the Initiator and
segment by the generator curve as shown in figure 2.35. Apparently the Generator

generator has two points of self-intersection. More precisely, the curve touches
itself at two points. Observe that this generator curve fits nicely into a square,
which is shown in dotted lines. It is this square whose points will be reached
by the Peano curve.

Let us carefully describe the next step. Take each straight line piece of the
curve in the first stage and replace it by the properly scaled down generator.
Obviously, the scaling factor is 3. This constitutes stage 2. There are a
total of 32 self-intersection points in the curve. Now we repeat, i.e., in each
step, line segments are scaled down by a factor of 3. Thus, in the kth step,
a line segment has length 1/3%, which is a very rapidly declining number.
Since each line segment is replaced by nine line segments of one-third the
length of the previous line segments, we can easily calculate the length of
the curves in each step. Assume that the length of the original line segment
constituting the initiator was 1, then we obtain in stage 1: 9 x 1/3 = 3, and
stage 2: 9 x 9 x 1/3%2 = 9. Expressed as a general rule, in each step of the
construction, the resulting curve increases in length by a factor of 3. In stage
k, the length thus is 3*.

'“G. Peano, Sur une courbe, qui remplit toute une aire plane, Math. Ann. 36 (1890) 157-160.

D, Hilbert, Uber die stetige Abbildung einer Linie aufein Flichenstiick, Math. Ann. 38 (1891) 459-460.

"*Hilbert introduced his example in Bremen, Germany, during the annual meeting of the Deutsche Gesellschaft fiir Naturforscher
und Arzte, which was the meeting at which he and Cantor were instrumental in founding the Deutsche Mathematiker Vereinigung,
the German Mathematical Society.
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Peano Curve Construction

Construction of a plane-filling curve
g 2 with initiator and generator. In each
step, one line segment is replaced by

step 0

v ‘g nine line segments scaled down by
a factor of 3. For reasons of clarity
step 1 the corners in these polygonal lines,
where the curve may intersect itself,
have been slightly rounded.

step 2

step 2

Figure 2.35

Self-Similarity

The Peano curve construction, though as easy, or as difficult, as the con-
struction of the Koch curve, bears within it several difficulties which did not
occur or were hidden in the latter (construction). For example, take the in-
tuitive concept of self-similarity. For the construction of the Koch curve, it
seemed that we could say that the final curve (i.e., the curve which you see on
a graphics terminal after many steps) has similarity with each of the preced-
ing steps. If you look at the Peano curve in the same intuitive way, each of
the steps has similarity with the preceding steps; but if you look at the final
curve (i.e., the curve which results after many steps on a graphics terminal),
essentially we see a ‘filled out’ square which doesn’t look at all similar to
the early steps of the construction. In other words, either the Peano curve
is not self-similar, or we have to be much more careful in describing what
self-similarity means. In fact, we will see in chapter 7 that the Peano curve
is perfectly self-similar. The problem is to ‘see’ the final object as a curve
because, in any graphical representation, it ‘looks’ much more like a piece of
the plane.

Let us explore the space-filling property a bit further. When you look at Parametrizatlon of a Square by
the displayed stages of the development of the curve, you notice that the Peano Curve
approximately the first 1/9th of the curve stays within the left subsquare,
and in fact, seems to fill just that area. Corresponding statements hold
for the other subsquares. You will also notice that each subsquare can
also be tiled into nine sub-subsquares, each one reduced by 1/9 when
compared to the whole one. The curve first traces out all tiles of a
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Hilbert’s Paper — Page 1

The first page of Hilbert’s original
1890, 2-page paper with the first vi-
sualization of a fractal, his space-
filling curve.

Figure 2.36

Ueber die stetige Abbildung einer Linie auf ein Flichenstiick.*)
Von

Davip Huwperr in Kbnigsbery i Pr.

Peano hat kiirzlich in den Mathematischen Annalen®*) durch eine
arithmetische Betrachtung gezeigt, wie die Punkle einer Linie stetig
auf die Punkte eines Flichenstilckes abgebildet werden kénuen. Die
fiir eine solche Abbildung erforderlichen Functionen lassen sich in
iibersichtlicherer Weise herstellen, wenn man sich der folgenden geo-
metrischen Anschauung bedient. Die abzubildende Linie — etwa eine
Gerade von der Linge I — theilen wir zunichst in 4 gleiche Theile
1,2,3,4 und das Flichenstiick, welches wir in der Gestalt eines
Quadrates von der Seitenlinge 1 annehmen, theilen wir durch zwei
zu einander senkrechte Gerade in 4 gleiche Quadrate 1, 2, 3, 4 (Fig. 1).
Zweitens theilen wir jede der Theilstrecken 1, 2, 3, 4 wiederum in 4
gleiche Theile, so dass wir auf der Geraden die 16 Theilstrecken
1,23, ...,16 erhalten; gleichzeitiz werde jedes der 4 Quadrate 1, 2,
3, 4 in 4 gleiche Quadrate getheilt und den so entstehenden 16 Quadraten
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Tig. 1. Hig. 2, Fig. 3.
werden dann die Zahlen 1,2 ... 16 eingeschrichen, wobei jedoch die
Reihenfolge der Quadrate so zu wiihlen ist, dass jedes folgende Quadrat
sich mit einer Seite an das vorhergehende anlehnt (Fig. 2). Denken
wir uns dieses Verfahren fortgesetzt — Fig. 3 veranschaulicht den

*) Vergl. eine Mittheilung dber denselben Gegenstand in den Verhandlongen
der Gesellschaft deutscher Naturforscher und Aerzte. Bremen 1890.

** Hd. 36, 8. 167.
30*

subsquare before it enters the next subsquare. This process goes on
and on through all stages of the curves.

The implication of this is as follows: if we trace out a stage of the
Peano curve up to a certain percentage, let us say to 10/27 of its total
length, i.e., about 37%, then we end up at a certain point in the square.
Now we go to the next stage and again trace out 37% of the new, longer
curve (see figure 2.38). Again we end up at a point in the square, and
this point is not far from the first one. When repeating this procedure
for the following stages, we obtain a sequence of points. These points
will converge to a unique point in the square. This point may be called
the point with address 10/27. In this manner, we can define for all
percentages — for all numbers between 0.0 and 1.0 — a point in the
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460 Daveo Hiveexr, Btelige Abbildung eioer Linie auf ein Flichenstiick.

niichsten Schritt —, so ist leicht ersichtlich, wie man einem jeden
gegebenen Punkte der Geraden einen einzigen bestimmten Punkt des
Quadrates zuordnen kann, Man hat nur néthig, digjenigen Theil-
strecken der Geraden zu bestimmen, auf welche der gegebene Punkt
fallt. Die mit den nimlichen Zahlen bezeichneten Quadrate liegen
nothwendig in einander und schliessen in der Grenze einen bestimmten
Punkt des Flichenstiickes ein, Dies sei der dem gegebenen Punkte
zugeordnete Punkt. Die 3o gefundene Abbildung ist eindeutig und stelig
und umgekehrt cinem jeden Punkte des Quadrates emtsprechen ein, 2wel
oder wvier Puwkie der Linie. Es erscheint tberdies bemerkenswerth,
dass durch geeignete Abiinderung der Theillinien in dem Quadrate sich
leieht eine eindeutige und stetige Abbildung finden ldsst, deren Um-
kehrung eine nirgends mehr als dreideutige st

Die oben gefundenen abbildenden Functionen siud zugleich ein-
fache Beispiele fiir iiberall stetige und nirgends differentiirbare Fune-
tionen.

Die mechanische Bedeutung der erbrterten Abbildung ist folgende:
Es kann sich ein Punkt stelig derart bewegen, dass er wikrend einer
endlichen Zeit siimmiliche Punkie eines Flichenstiickes trifff. Auch kann
man — ebenfalls durch geeignete Abiinderung der Theillinien im
Quadrate -— zugleich bewirken, dass in unendlich vielen iberall dichi-
vertheillen Punkien des derates eine bestimmie Bewegungsrichtung
sowohl nach vorwdrts wie nach riickwdrts existirt.

Was die apalytische Darstellung der abbildenden Functionen an-
betrifft, so folgt aus ihrer Stetigkeit nach einem allgemeinen von
K. Weierstrass bewiesenen Satze*) sofort, dass diese Functionen sich
in unendliche nach ganzen rationalen Functionen fortschreitende Reihen
entwickeln lassen, welche im ganzen Intervall absclut und gleichméssig
convergiren,

Kdnigsberg i. Pr., 4. Mirz 1891,

*) Vergl. Bitsungsberichte der Akademie der Wiseenschaften zu Berlin,
9, Juli 1845,

square. These points will form a curve that passes through every point
in the square! Using mathematical terms, we say that “the square can
be parametrized by the unit interval’. Thus, a curve, which by nature
is something one-dimensional, can fill something two-dimensional. It
seems that the use of the intuitive notion of dimension here is rather
slippery.

To make the argument precise, one would have to introduce an
addressing system, which for the case of the Peano curve would be
based on strings composed of nine symbols, or digits. For each point
in the square there is an address, which is an infinite string. This string
also identifies points from each stage of the Peano curve construction.

Hilbert’s Paper — Page 2

Figure 2.37
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1

e i " P
step 2 S step 3 SN
Figure 2.38 : The Peano curves of four different stages are traced out to

1/3 + 1/27 = 10/27 of the total length. The rest of the curve is not shown
in the bottom figures. The parameter 10/27 identifies a point marked in each
graph. These points converge to a unique point in the square as the number of
steps increases.

That sequence of points (one from each stage) will converge to the
original point in the square.

The space-filling Peano curve, orrather any finite stage of the construction,  Is There a Better Way

certainly is very awkward to draw by hand or even by a plotter under computer to Fill a Square by a
control. The numberof small line segments that mustbe drawn tofill the square Curve?
is just enormous. Moreover, there is a 90 degree turn after every segment.
Therefore it is fair to ask whether there is a much simpler way to fill a square
with a line. Think of how you would approach that problem with a pencil in
your hand. It seems the easiest way would be to just draw a zigzagging line
from one side of the square to the other, making sure that the turns are narrow
enough in order to avoid any white spaces on the paper.
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Filling a Square the Naive

[JI'\ Wa
085 ' y
The first four stages in an attempt to
construct another space-filling curve
0425 using zigzag curves.
0.2125 stage 0 0.2125 stage 1
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0.2125 stage 2 0.2125 stage 3
Figure 2.39
The Naive Let us put this procedure into a more mathematical description analogous

Construction ...

to the stages in the Peano curve construction. Stage 0 is a simple line from
the lower left corner to the middle of the top side of the square and back to
the base line ending at the lower right corner. For the next stage let us double
the resolution in the sense that a horizontal line somewhere in the middle of
the square will intersect the next curve at twice as many points. This is easy
to achieve just by doing two zigzags at half the distance (see figure 2.39).

It is obvious how to continue the construction. For each stage we just
double the number of zigzags. For any given resolution € > 0 we can certainly
find a stage at which the generated curve passes by every point in the square
with a distance less than €, and we would say that the job is done. Moreover,
we could even claim to have invented a space-filling curve, which is in some
sense self-similar, because in each stage the curve is composed of two copies
of the curve of the previous stage, properly scaled in the horizontal direction. "’
Any child will accomplish something like this at an early age. Certainly, the
brilliant minds of Peano and Hilbert must have been aware of this. Then, what
was it that drove them to invent such complicated constructions, which then
were even accepted for publication in most renowned mathematical journals?

For cases like this one, where the scaling factor is different in different directions, the term self-affine is more appropriate.
Affine transformations are discussed further in chapters 5 and 6.
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The answer seems contra-intuitive, but logical after a little bit of analysis. ...Does Not Lead
What comes out of the Peano curve construction in the limit is a curve, as Anywhere
pointed out in the technical section starting on page 93. This curve has infinite
length, self-similarities and it reaches every point in the square. By contrast,
the naive construction from above will not lead to a curve, although every stage
of itis a curve! Let us explore this astonishing fact. We label the horizontal
and vertical axes of the square by x and y, which both range fromOto 1. A
curve from some stage, say the n'' stage, of the construction then is given
by the graph of a zigzag function, which we call y,. Let us now fix some
coordinate & between 0 and 1 and look at the corresponding values yn(z) as
the stage n increases. If the construction really leads to a well-defined limit
curve, then one must expect that the sequence of points y1(x), y2(), . .. also
converges, namely, to the y-value of the limit curve at position z. Clearly this
is true for all points z which allow a finite binary representation such as 1/4 or
139/256 because by construction at such points all curves will have a y-value
of 0, provided the stage is large enough. But then there are other points which
clearly violate the crucial convergence property. For example, at z = 1/7
the y-values of the curves are 2/7, 4/7, 6/7, 2/7,4/7,6/7, . . . and so on in a
periodic fashion. Therefore, there is no limit object, no space-filling curve,
and no new insight. This naive way of filling the square is essentially the same
asjust filling a finite array of pixels in an image by assigning ‘black’ to every
pixel. After a certain number of steps we are done, and continuing for higher
resolutions would not make sense. There is no self-similarity and certainly
not a fractal behind the picture. So this is the real ingenuity of Peano and
Hilbert — they created a ‘monster’ with unforeseen properties which were
never thought possible before.

Analysis of the Naive It is not hard to analyze the sequence of curves from the naive space-
Approach to Space-Filling filing construction. For this purpose let us introduce the periodically
extended tent transformation

[ 2frac(z) if frac(z) < 0.5
h(z) = { 2(;ai frac(z)) ;f f::z(x) > 0.5,

where frac(z) denotes the fractional part of z, i.e.,
frac(z) = z — max{k | k < z, k integer}.
With this notation we can write the curves in the construction simply as

yolz) = h(x),
wi{z) = h(2x),
yz(l') = h(4.’11‘),

yn{x) = h(2"x),
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where in all cases x ranges from 0 to 1. We see that only the fractional
parts of z, 2z,4x,...,2"x, ... determine the y-values of the curves
at position . Considering the example z = 1/7 from the text, we now
see that

frac (1/7) = 1/7
frac (2/7) = 2/7
frac (4/7) = 47
frac (8/7) = 1/7

Thus, the fractional part of 16/7 again is 2/7 and so on in a pe-
riodic fashion. Applying the tent transformation to these fractional
parts 1/7, 2/7, 4/7, 1/7, ... finally yields the sequence of values
217, 417, 6/7, 217, 417, 6/7, . .. as claimed in the text. Therefore the
limit

Jlim yn(1/7)

does not exist, and the sequence of curves yo, ¥1, - .. cannot have a
limit curve.

To conclude we ask whether our choice of x = 1/7 for the con-
vergence test is a rather artificial and rare case. The answer here
is no. In fact, it is true for almost all positions x that the sequence
yo(z),y1(x), ... has no limit. Let us briefly elaborate. The fractional
parts of 2"z are most easily found, when the position z is given in a
binary representation. The example from the text, * = 1/7, has a
binary expansion 0.001001. . .

m—1-|—1+1+ 3 B
T8 ' 64 ' 512 T1-1

0oj—

1
2

ot

Multiplying a binary number by 2 is equivalent to just shifting all
binary digits one position to the left. Taking the fractional part of
the result means deleting any leading digits before the binary point.
For example, the repeated binary shifts of 1/7 are 0.010010 . . .,
0.100100 . . ., and 0.001001 . . ., which is equal to 1/7 again. The
complete operation is also known as the binary shift, and we remark
in passing that it is central to the analysis of chaos in chapter 10.
Applying the binary shift repeatedly to a number is thus the same
as placing that number at the corresponding position on an infinitely
precise ruler, and looking at it through a microscope, increasing the
magnifying power continuously by a factor of two. If we take a random
number between 0 and 1, with random binary digits, then the binary
shift will produce a sequence of random numbers, which certainly will
never settle down to a limiting value. Because ‘most’ numbers have
random digits, the lack of convergence with regard to our naive curve
construction is typical and not the exception.
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Two Dithering Methods

Dithering with the Hilbert curve
(right) versus traditional dithering is
shown in the upper row. The squares
are continuously shaded from white
(lower left corner) to black (upper
right corner). The bottom row shows
the test image “Lenna” (left) and
a dithering using the Hilbert curve

(right).

Figure 2.40
It may seem that space-filling curves are mostly an academic curiosity — An Application of
regarded as ‘monsters’ initially. However, they became important roots in Space-Filling Curves

Mandelbrot’s development of fractals as models of nature. Moreover — and
this may come as a real surprise — those early monsters are also good for
down-to-earth technical applications 100 years after their discovery. Let us
briefly describe an image processing application published at the prestigious
SIGGRAPH'® convention in 1991. It introduces a novel digital halftoning
technique useful to render a grey-scale image on a bilevel graphic device
such as a laser printer.' The problem lies in the fact that a printer renders
a bitmap, an array of black and white pixels, while shades of grey cannot be
represented at the pixel level. To cope with this difficulty, several so-called
dithering techniques have been used. They are based on scanning a given
grey-scale image line by line or in small square blocks. A black and white
approximation of the image is produced with the objective to minimize an
overall error. Usually, there are artefacts in the result which make it obvious
that a dithering process was involved. How can space-filling curves help?
Imagine a Hilbert curve that passes through all pixels of the given grey-scale
image. The curve offers an alternative to scanning the image line by line,

'8SIGGRAPH is the Special Interest Group Graphics of the Association for Computing Machinery (ACM). Their yearly con-
ventions draw about 30,000 professionals from the field of computer graphics.
L. Velho, J. de Miranda Gomes, Digital Halftoning with Space-Filling Curves, Computer Graphics 25,4 (1991) 81-90.
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Dithering with the Hilbert
Curve

The principle of the dithering al-
gorithm based on four successive
stages of the Hilbert scan of an im-
age. The same shaded square is used
as in figure 2.40.

Figure 2.41

namely, to sample the image pixel by pixel along the Hilbert curve. Now a
sequence of consecutive pixels along this convoluted path can be replaced by
a black and white approximation. The advantage of the image scan along
the Hilbert curve is that it is free of any directional features present in the
traditional methods. It produces aperiodic patterns of clustered dots which
are perceptually pleasant with characteristics similar to photographic grain
structures. Figure 2.40 compares the traditional approach, called clustered-dot
ordered dither, with the new method. Besides this dithering algorithm, there
are other earlier applications of space-filling curves in image processing.*

Let us describe the details of a simplified version of the dithering algo- Hilbert Curve Dithering
rithm with the Hilbert curve. We consider a square image with contin- Algorithm
uously varying grey shades which must be approximated by an image
which may contain only black and white pixels. The resolution of the
output image must be a power of 2. For example, we consider images
with 2, 4, 8, and 16 pixels per row and per column in figure 2.41. As
shown for the first few of these cases, we can fit a corresponding Hilbert
curve exactly to such a tiling of the image. This introduces an ordering

2R. J. Stevens, A. F. Lehar, F. H. Preston, Manipulation and Presentation of Multidimensional Image Data Using the Peano
Scan, IEEE Transactions on Pattern Analysis and Machine Intelligence 5 (1983) 520-526.
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of the pixels. For the 4 by 4 pixel example, where we label columns by
letters A, B, C, and D, and rows by 1, 2, 3, and 4, the pixels of the
image are ordered as follows

Al,B1,B2,A2,...,D2,C2,C1, D1,
Let us denote by
IlaI27"' ’I'n.

the intensity values of the corresponding pixels of the shaded input
image (ranging from 0 for black to 1 for white). Here n is a power of 2,
the total number of pixels in the image. For the definition of the output
image we have to compute corresponding intensity values

01,02,...,0n € {0,1}

To begin we set

010 ifI, <05
173 1 L > 0.5.

This approximation carries an error
E1 = Il - 01.

Instead of ignoring this error we can pass it along to the next pixel in
the sequence. More precisely, we set

O, = 0 ity +FEr_1 <05
T i Iy 4 Ego1 > 0.5
Ey = I+ Eg_q — Oy.

In other words, the error diffuses along the sequence of pixels. The goal
of this error diffusion is to minimize the overall error in the intensities
averaged over blocks of various sizes of the image. For example, we
have that the errors, summed up over the complete image, are equal
to

i Ey, = E,
k=1

which is expected to be relatively small. The crucial point of the algo-
rithm is that the error diffuses along the Hilbert curve which traces out
the image in a way that is conceived as very irregular to our sensory
system. If we replace the Hilbert curve for example by a curve which
scans the image row by row, the regular error diffusion will produce
disturbing artefacts. The algorithm proposed by Velho and de Miranda
Gomes at SIGGRAPH is a generalization of this method. It considers
blocks of consecutive pixels from the Hilbert scan at a time, instead of
individual pixels.*!

The simplified version presented here was first published in I. H. Witten and M. Neal, Using Peano curves for bilevel display
of continuous tone images, IEEE CG&A, May 1982,47-52.
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Conclusion

In conclusion, we have shown that the notion of self-similarity in a strict
sense requires a discussion of the object which finally results from the con-
structions of the underlying feedback systems; and it can be dangerous to use
the notion without care. One must carefully distinguish between a finite con-
struction stage and the fractal itself. But if that is so, then how can we discuss
the forms and patterns which we see in nature, as for example the cauliflower,
from that point of view?

The cauliflower shows the same forms — clusters are composed of smaller
clusters of essentially the same form — over a range of several, say five
or six, magnification scales. This suggests that the cauliflower should be
discussed in the framework of fractal geometry very much like our planets are
suitably discussed for many purposes as perfect spheres within the framework
of Euclidean geometry. But a planet is not a perfect sphere and the cauliflower
is not perfectly self-similar. First, there are imperfections in self-similarity: a
little cluster is not an exact scaled down version of a larger cluster. But more
importantly, the range of magnification within which we see similar forms is
finite. Therefore, fractals can only be used as models for natural shapes, and
one must always be aware of the limitations.
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2.6 Fractals and the Problem of Dimension

The invention of space-filling curves was a major event in the development
of the concept of dimension. They questioned the intuitive perception of
curves as one-dimensional objects, because they filled the plane (i.e., an object
which is intuitively perceived as two-dimensional). This contradiction was
part of a discussion which lasted several decades at the beginning of this
century. Talking about fractals we usually think of the fractal dimension,
Hausdorff dimension or boxcounting dimension (we will discuss this in detail
in chapter 4), but the original concepts reside in the early development of

topology.
Topology is a branch of mathematics which has essentially been developed A World Behaving
in this century. It deals with questions of form and shape from a qualitative Like Rubber

point of view. Two of its basic notions are ‘dimension’ and‘ homeomorphism’.
Topology deals with the way shapes can be pulled and distorted in a space that
behaves like rubber.

Circle, Square and Koch
Island

A circle can be continuously de-
formed into a triangle. A triangle
can be deformed into a Koch Island.
Topologically they are all equiva-
lent.

Q/
\

e

*
Xﬁl

Figure 2.42

In topology straight lines can be bent into curves and circles can be pinched
into triangles or pulled out as squares. For example, from the point of view
of topology a straight line and the Koch curve cannot be distinguished. Or
the coast of a Koch island is the same as a circle. Or a plain sheet of paper
is equivalent to one which is infinitely crumpled. However, not everything
is topologically changeable. Intersections of lines, for example remain inter-
sections. In mathematicians’ language an intersection is invariant; it cannot
be destroyed nor can new ones be born, no matter how much the lines are



2.6 Fractals and the Problem of Dimension 105

Topological
Equivalence

Topological Dimension

stretched and twisted. The number of holes in an object is also topologically
invariant, meaning that a sphere may be transformed into the surface of a
horseshoe, but never into a doughnut. The transformations which are allowed
are called homeomorphisms, and when applied, they must not change the
invariant properties of the objects. Thus, a sphere and the surface of a cube
are homeomorphic, but the sphere and a doughnut are not.

We have mentioned already that a straight line and the Koch curve are
topologically the same. Moreover, a straight line is the prototype of an object
which is of dimension one. Thus, if the concept of dimension is a topological
notion, we would expect that the Koch curve also has topological dimension
one. This is, however, a rather delicate matter and it troubled mathematicians
around the turn of the century.

The history of the various notions of dimension involves the greatest math-
ematicians of that time: men like H. Poincaré, H. Lebesgue, L. E. J. Brouwer,
G. Cantor, K. Menger, W. Hurewicz, P. Alexandroff, L. Pontrjagin, G. Peano,
P.Urysohn,E. Cech, and D. Hilbert. That history is very closely related to the
creation of the early fractals. Hausdorff remarked that the problem of creating
the right notion of dimension is very complicated. People had an intuitive idea
about dimension: the dimension of an object, say X, is the number of indepen-
dent parameters (coordinates), which are required for the unique description
of its points.

Poincaré’s idea was inductive in nature and started with a point. A point
has dimension 0. Then a line has dimension 1, because it can be split into
two parts by a point (which has dimension (). And a square has dimension
2, because it can be split into two parts by a line (which has dimension 1). A
cube has dimension 3, because it can be split into two parts by a square (which
has dimension 2).

In the development of topology, mathematicians looked for qualitative
features which would not change when the objects were transformed properly
(technically by a homeomorphism). The (topological) dimension of an object
certainly should be preserved. But it turned out that there were severe diffi-
culties in arriving at a proper and detailed notion of dimension which would
behave that way. For example, in 1878 Cantor found atransformation f from
the unit interval [0, 1] to the unit square [0, 1] x [0, 1] which was one-to-one and
onto.” Thus it seemed that we need only one parameter for the description of
the points in a square. But Cantor's transformation is not a homeomorphism.
It is not continuous, i.e., it does not yield a space-filling curve!

But then the plane-filling constructions of Peano and later Hilbert yielded
transformations g from the unit interval [0,1] to the unit square [0,1] x [0,1]
which were even continuous. But they were not one-to-one (i.e., there are
points, say xy and &2, *; # 23, in the unit interval which are mapped to the
same point of the square y = g(z1) = g(x2)).

22Two objects X and Y (topological spaces) are homeomorphic if there is a homeomorphism h : X — Y (i.e., a continuous
one-to-one and onto mapping that has a continuous inverse A1),
23The notion ‘onto’ means here that for every point z of the unit square there is one point 2 in the unit interval that is mapped to

z = f(x).
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Construction of the Menger
Sponge

An object which is closely related to
the Sierpinski carpet is the Menger
sponge, after Karl Menger (1926).
Take a cube, subdivide its faces
into nine congruent squares and drill
holes as shown from each central
square to the opposite central square
(the cross-section of the hole must
be a square). Then subdivide the re-
maining eight little squares on each
face into nine smaller squares and
drill holes again from each of the
central little squares to their opposite
ones, and so on.

Figure 2.43

This raised the question — which so far seemed to have an obvious answer
— whether or not there is a one-to-one and onto transformation between I =
[0,1] and I? = [0, 1] x [0, 1] which is continuous in both directions. Or more
generally, is the n-dimensional unitcube I™ = [0, 1]™ homeomorphic to the m-
dimensional one, I™ = [0, 1)™,n # m? If there were such a transformation,
mathematicians felt that they were in trouble: a one-dimensional object would
be homeomorphic to a two-dimensional one. Thus, the idea of topological
invariance would be wrong.

Between 1890 and 1910 several ‘proofs’ appeared showing that I™ and I™
are not homeomorphic when n # m, but the arguments were not complete.
It was the Dutch mathematician Brouwer who ended that crisis in 1911 by
an elegant proof, which enriched the development of topology enormously.
But the struggle for a suitable notion of dimension and a proof that obvious
objects — like I™ — had obvious dimensions went on for two more decades.
The work of the German mathematician Hausdorff (which led eventually to
the fractal dimension) also falls in this time span.

During this century mathematicians came up with many different notions
of dimension (small inductive dimension, large inductive dimension, covering
dimension, homological dimension).** Several of them are topological in
nature; their value is always a natural number (or O for points) and does not

Line and Square Are
Not Equivalent

*C. Kuratowski, Topologie II, PWN, 1961. R. Engelking, Dimension Theory, North Holland, 1978.
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Covering a Curve

Three different coverings of a curve
by circles.

Figure 2.44

Covering a Surface

The covering of a surface by balls.

Figure 2.45

The Covering
Dimension

change for topologically equivalent objects. As an example of these notions
we will discuss the covering dimension. Other notions of dimension capture
properties which are not at all topologically invariant. The most prominent
one is the Hausdorff dimension. The Hausdorff dimension for the straight
line is 1, while for the Koch curve it is log4/log3. In other words, the
Hausdorff dimension has changed, though from a topological point of view
the Koch curve is just a straight line. Moreover, log4/log 3 = 1.2619 ...
is not an integer. Rather it is a fraction, which is typical for fractal objects.
Other examples which are of (covering) dimension 1 are the coast of the
Koch island, the Sierpinski gasket and also the Sierpinski carpet. Even the
Menger sponge, whose basic construction steps are indicated in figure 2.43,
is of (covering) dimension 1. Roughly, the gasket, carpet and sponge have
(covering) dimension 1 because they contain line elements but no area, or
volume elements. The Cantor set is of dimension 0 because it consists of
disconnected points and it does not contain any line segment.

Let us now discuss the topologically invariant cover dimension. The idea
behind its concept — which is attributable to Lebesgue — is the following
observation: let us take a curve in the plane (see figure 2.44), and try to cover
it with disks of a small radius. The arrangement of disks on the left part of the
curve is very different from the one in the middle, which in turn is very different
from the one on the right part of the curve. What is the difference? In the right
part we can only find pairs of disks which have nonempty intersection, while
in the center part we can find triplets and in the left part even a quadruplet of
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disks which have nonempty intersection.

This is the crucial observation, which leads to a definition. We say that
the curve has covering dimension 1 because we can arrange coverings of the
curve with disks of small radius so that there are no triplets and quadruplets,
but only pairs of disks with nonempty intersection, and moreover, there is no
way to cover the curve with sufficiently small disks so that there are no pairs
with nonempty intersection.

This observation generalizes to objects in space (in fact also to objects
in higher dimensions). For example, a surface in space (see figure 2.45) has
covering dimension 2, because we can arrange coverings of the surface with
balls of small radius so that there are no quadruplets but only triplets of balls
with nonempty intersection, and there is no way to cover the surface with
sufficiently small balls so that there are only pairs with nonempty intersection.

Refinement of Covers and
Covering Dimension

We are accustomed to associating dimension 1 with a curve, or di-
mension 2 with a square, or dimension 3 with a cube. The notion of
covering dimension is one way to make this intuition more precise. It is
one of several notions in the domain of topological dimensions. Let us
first discuss the covering dimension for two examples, a curve in the
plane and a piece of a surface in space, in figure 2.44 and figure 2.45,
respectively.

We see a curve covered with little disks and focus our attention
on the maximal number of disks in the cover which have nonempty
intersection. This number is called the order of the cover. Thus, at the
left end of figure 2.44 the order is 4, while in the center it is 3, and at
the right end itis 2. In figure 2.45 we see a piece of a surface in space
covered with balls and the order of the cover is 3.

We have almost arrived at the definition. For that, we introduce
the notion of a refinement of a cover. For us, covers of a set X in the
plane (or in space) are just collections of finitely many open disks (or
balls) of some radius,” say A = {Dj,..., D,}, such that their union
covers X. More precisely we assume that we have a compact metric
space X. A finite cover, then, is a finite collection of open sets, such
that X is contained in the union of these open sets. An open cover
B ={E1,...,E},l > riscalled arefinementof A = {Dy,..., D, }
provided for each F; thereis Dy such that E; C Dy. The order of
an open cover A is the maximal integer k, such that there are disjoint
indices 1, ..., 4 with D;, N---N D, # @. If the intersection of all
pairs of sets from a cover is empty, then the order is 1. If a cover has
order n then any n + 1 sets from the cover have empty intersection.

We will now define the covering dimension of X,* dimX. Let
n 2> 0 be an integer. Then we define dimX < n, provided any finite
open cover of X has a finite open refinement of order < n+ 1. Finally,
dimX = n, provided dimX < n, but not dimX < n — 1. In other
words, the latter condition means that there is a finite open cover of X

»<Open’ means that we consider a disk (resp. ball) without the bounding circle (resp. sphere) or, more generally, unions of such

disks (resp. balls).

**We assume that X is a compact metric space.
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Figure 2.46: The covering at a branching point and a refinement.

such that all finite open refinements have order > n + 1.

Figure 2.46 illustrates that the notion of refinement is really crucial.
The large cover (dotted circles) covers the y-shaped object so that in
one case three disks intersect. But there is a refinement with smaller
disks (solid circles, each smaller open disk is contained in a large open
disk), such that at most two disks intersect.

Now it is intuitively clear that a finite number of points can be cov-
ered so that there is no intersection. Curves can be covered so that
the order of the cover is 2 and there is no cover of sufficiently small
disks or balls with order 1. Surfaces can be covered so that the order
of the cover is 3 and there is no cover of sufficiently small disks or balls
with order 2. Thus the covering dimension of points is 0, that of curves
is 1, and that of surfaces is 2.

The same ideas generalize to higher dimensions. Moreover, it
does not matter whether we consider a curve imbedded in the plane
or in space and use disks or balls to cover it.’

“For more details about dimensions we refer to Gerald E. Edgar, Measure, Topology and Fractal Geometry, Springer-Verlag,

New York, 1990.
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2.7 The Universality of the Sierpinski Carpet

We have tried to obtain a feeling for what the topological notion of dimension
is and we have learned that from this point of view not only a straight line,
but also, for example, the Koch curve is a one-dimensional object. Indeed,
from the topological point of view the collection of one-dimensional objects is
extremely rich and large, going far beyond objects like the one in figure 2.47,
which come to mind at first.

A Tame One-Dimensional
Object

This wild-looking curve is far from a
really complex one-dimensional ob-
ject.

Figure 2.47

We are now prepared to get an idea of what Sierpinski was trying to
accomplish when he developed the carpet. We want to build a house or hotel
for all one-dimensional objects. This house will be a kind of super-object
which contains all possible one-dimensional objects in a topological sense.
This means that a given object may be hidden in the super-object not exactly
as it appears independently, but rather as one of its topologically equivalent
mutants. Just imagine that the object is made out of rubber and can adjust its
form to fit into the super-object. For example, the spider with five arms in
figure 2.48 may appear in any one of the equivalent forms in the super-object.

In which particular form a spider with five arms will be hidden in the

super-object is irrelevant from a topological point of view. In other words, if
one of the arms were as wild as a Koch curve, that would be acceptable too.

The House of
One-Dimensional
Objects

Topologically Equivalent
Spiders

All these spiders with five arms are
topologically equivalent.

Figure 2.48
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Sierpinski’s marvelous result”® in 1916 says that the carpet is such a super-
object. In it we can hide any one-dimensional object whatsoever. In other
words, any degree of (topological) complexity a one-dimensional object may
have must also be present in the Sierpinski carpet. Sierpinski’s exact result is:

Fact. The Sierpinski carpet is universalfor all compact” one-dimensional

objects in the plane.

Letus get some initial idea about the meaning of the above statements. Take
apiece of paper and draw acurve (i.e., atypical one-dimensional object) which
fits (this makes it compact) on the paper. Try to draw areally complicated one,
as complicated as you can think, with as many self-intersections as you may
wish. Even draw several curves on top of each other. Whatever complication
you may invent, the Sierpinski carpet is always ahead of you. That is, any
complication which is in your curve is also in some subset (piece) of the
Sierpinski carpet. More precisely, within the Sierpinski carpet we may find
a subset which is topologically the same as the object which you have drawn
on your paper. The Sierpinski carpet is really a super-object. It looks orderly
and tame, but its true nature goes far beyond what can be seen. In other
words, what we can see with our eyes and what we can see with our mind
are as disparate as they can be. We might say the Sierpinski carpet is a hotel
which accommodates all possible (one-dimensional, compact) species living

in flatland. But not everything can live in flatland.

We can draw curves in a plane or in space. But can we draw all curves Planar and Non-planar Curves

that we can draw in space also in a plane? At first glance yes, but
there is a problem. Take the figure “8” (a) in the plane in figure 2.49,
for example.

Is it a real figure “8” (with one self-intersection) or does it just look
like a figure “8” because it is a projection of the twisted circle which
lies in space as in (b)? Without further explanation it could be both.
However, from a qualitative point of view a figure “8” is very different
from a circle because it has a self-intersection and it separates the
plane into three regions rather than only two as for a circle. Thus,
topologically we have to distinguish them from each other. The curve
in (b) is a circle from a topological point of view and can be embedded
easily into a plane without self-intersections once we untwist it.

This raises the question whether any curve in space can be em-
bedded into a plane without changing its topological character. The
answer is no. The WG&E example in figure 2.50 is a simple illustra-
tion. Imagine that we have three houses A, B, and C which have to
be supplied with water, gas and electricity from W, G, and E so that
the supply lines do not cross (if drawn in a plane). There is no way to

SW. Sierpinski, Sur une courbe cantorienne qui contient une image biunivoquet et continue detoute courbe donnée C. R. Acad.

Paris 162 (1916) 629-632.

»Compactness is a technical requirement which can be assumed to be true for any drawing on a sheet of paper. For instance, a
disk in the plane without its boundary would not be compact, or a line going to infinity would also not be compact. Technically,
compactness for a set X in the plane (or in space) means that it is bounded, i.e., it lies entirely within some sufficiently large disk

in the plane (or ball in space) and that every convergent sequence of points from the set converges to a point from the set.
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O. O.

(@) (b)

Figure 2.49 : The figure “8” is not equivalent to the circle (a). The twisted circle
is equivalent to a circle (b).

Figure 2.50 : A tough problem: can one get water, gas and electricity to all
three houses without any intersection? The complete graph (with intersections!)
is shown in the upper left corner of the figure.

bring a line from E to A without a crossing. The only way to escape a
crossing is to go into space (i.e., run the supply lines at different levels).

Thus, if we are interested in maintaining the topological character
of one-dimensional objects, we may have to go into space. In fact, ev-
ery one-dimensional object can be embedded into three-dimensional
space. Generalizations of this question are at the heart of topology. It
is this branch which goes beyond the intuitive understanding of why
the skeleton in figure 2.50 cannot be embedded into the plane by
providing very deep methods which generalize to higher dimensions.
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For instance, any two-dimensional object can be embedded into a
five-dimensional space, and the five dimensions are actually needed
in order to avoid obtaining effects similar to self-intersections, which
would change the topological character.

The Universality of the
Menger Sponge

Note that the graph in figure 2.50 cannot be drawn in the plane without self-
intersections. Thus this graph cannot be represented in the Sierpinski carpet.
This leads to the question, what is the universal object for one-dimensional
objects in general (i.e., both in the plane and in space)?

About ten years after Sierpinski had found his result, the Austrian math-
ematician Karl Menger solved this problem and found a hotel for all one-
dimensional objects. He proved around 1926 the following.*

Fact. The Menger sponge is universal for all compact one-dimensional ob-
Jects.

Roughly, this means that forany admissible object (compact, one-dimensional)
there is a part in the Menger sponge which is topologically the same as the
given object.’ That is, imagine that the given object again is made of rubber.
Then some deformed version of it will fit exactly into the Menger sponge.

We cannot demonstrate the proofs of Menger or Sierpinski’s amazing
results; they are beyond the scope of this book. But we want to give an idea of
the complexity of the one-dimensional objects we can find here. Let us discuss
just one of many methods to measure this complexity. In particular this will
allow us to distinguish between the Sierpinski gasket and the Sierpinski carpet.
Since their basic construction steps are so similar (see section 2.2), we may
ask whether the gasket is also universal. In other words, how complicated
is the Sierpinski gasket? Is it as complicated as the carpet, or less? And if
less, how much less complicated is it? Would you bet on your guess or visual
intuition?

The answer is really striking: the Sierpinski gasket is absolutely tame
when compared with the carpet, though visually there seems to be not much
of a difference. The Sierpinski gasket is a hotel which can accommodate only
a few (one-dimensional, compact) very simple species from flatland. Thus,
there is, in fact, a whole world of a difference between these two fractals. Let
us look at objects like the ones in figure 2.51.

What we see are line segments with crossings. Or, we could say we see a
central point to which there are different numbers of arms attached. We like
to count the number of arms by a quantity which we call the branching order
of a point. This will be a topological invariant. That is, this number will not
change when we pass from one object to a topologically equivalent one. We
can easily come up with one-dimensional objects of any prescribed branching
order.

K. Menger, Allgemeine Riiume und charakteristische Réiume, Zweite Mitteilung: ,,Uber umfassendste n-dimensionale Men-
gen”, Proc. Acad. Amsterdam 29, (1926) 1125-1128. See also K. Menger, Dimensionstheorie, Leipzig 1928.
3! Formally, for any compact one-dimensional set A there is a compact subset B of the Menger sponge which is homeomorphic

to A.
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Order of Spiders

Spiders with increasing branching.

Figure 2.51

Branching Order

TR

There is a very instructive way to distinguish one aspect of many differ-
ent (topological) complexity features for one-dimensional objects. This
concerns their branching and is measured by the branching order,*
which we introduce next. Figure 2.52 shows some different types of
branched structures.

(a) (b) (c)

1 5
—l—i 2

3
2 1 2
1
®© I (d) (e)
lll\\\z-x , g
'|\' \ . ~
1\ 1 S
o 14 1/ 1
Figure 2.52 :  Several examples of finite and (countably) infinite branching

order. The numbers indicate the branching order of the corresponding points.

The branching order is a local concept. It measures the number of
branches which meet in a point. Thus, for a point on a line we count
two branches, while for an endpoint we count one branch. In example
(d) of figure 2.52 we have one point — labelled oo — from which there
are infinitely (countably) many line segments. Thus, this point would
have branching order oo, while points on the generating line segments
(disregard the limit line) again would have branching order 2. Let us
call the objects in figure 2.52 spiders. Thus, the spiders shown have
2, 3,5, 00, and 6 arms.

32See A. S. Parchomenko, Was ist eine Kurve, VEB Verlag, 1957.
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1/3 2/3 1
Cantor set

Figure 2.53 : An example of uncountably infinite branching order; the Cantor
brush.

Let X be a set” and let p € X a point. Then we define the
branching order of X atp to be™

ord x (p) = the number of branches of X at p.

One way to count these branches would be to take a sufficiently small
disk around the point of interest and count the number of intersection
points of the boundary of the disks with X.

Let us now construct a monster spider whose branching order has
the cardinality of the continuum, i.e., there are as many branches as
there are numbers in the unit interval [0,1].

We begin by taking a single point, say P, in the plane at (1/2, 1)
(see figure 2.53), together with the Cantor set C in [0, 1]. Now from
each point in C we draw a line segment to P. You will recall that
the cardinality of the Cantor set is the same as the cardinality of [0,1].
Therefore the cardinality of the points in the boundary of a small disk
around P will again be the same. We call this set a Cantor brush.

Any pictorial representation of the Cantor brush can be a bit mis-
leading. It might suggest that there is a countable number of bristles,
while in fact they are uncountable. It can be shown that the Cantor
brush is, however, a set of (covering) dimension 1, as is, of course any
spider with a finite number of arms.

Now let us look at the Sierpinski gasket in terms of the branching
order (see figure 2.54). Which spiders can be found in the gasket? It

3Formally, we need that X is a compact metric space.

** A formal definition goes like this. Let c be a cardinal number. Then one defines ordx (p) < a, provided for any € > O
there is a neighborhood U of p with a diameter diam(U) < € and such that the cardinality of the boundary 8U of U in X is not
greater than o, card(8U) < a. Moreover, one defines ordx (p) = a, provided ord x (p) < o and additionally there is g9 > 0,
such that for all neighborhoods U of  with diameter less than &g the cardinality of the boundary of U is greater or equal to o,

card(0U) > .
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Figure 2.54 : The Sierpinski gasket allows only the branching orders 2, 3, and
4.

can be shown that if p is any point in the Sierpinski gasket S then

2, if pis a corner of the initial triangle
ordg(p) = ¢ 4, if pis atouching point
, if pis any other point.

w

If pis a corner point, exactly two arms lead to this point. Observe
how the circles drawn around the corner point (they need not to be
centered at p) intersect the Sierpinski gasket at just two points. If p
is a touching point, we can trace four arms to this point. In this case
one can see circles around p that intersect the gasket at exactly four
points. Now if p is any other point it must be right within an infinite
sequence of subtriangles.*® These subtriangles are connected to the
rest of the Sierpinski gasket at just three points. Thus we can find
smaller and smaller circles around p which intersect the Sierpinski
gasket at exactly three points and we can construct three arms which
pass through these points leading to p.

3 Compare page 291.
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Six-Armed Spiders

These two spiders are topologically
equivalent.

The Universality of the
Sierpinski Carpet

e S S Figure 2.55

We can observe that the Sierpinski gasket has points with branching order
2, 3 and 4 (see figure 2.54). These are the only possibilities. In other words,
a spider with five (or more) arms cannot be found in the Sierpinski gasket!®

On the other hand, the Sierpinski carpet is universal. Therefore it must
accommodate spiders with any branching order, and, in particular, it must
even contain a (topological) version of the Sierpinski gasket. Let us try to
construct, as a very instructive example, a spider with five or six arms in the
Sierpinski carpet. This is demonstrated in figure 2.56 and figure 2.57. Figure
2.55 shows the actual spider which we have found in the carpet (right) and a
topologically equivalent spider (left).

Let us summarize. Our discussion of the universality of the Sierpinski
carpet shows that fractals in fact have a very firm and deep root in a beautiful
area of mathematics, and in varying an old Chinese saying’’ we may say
fractals are more than pretty images.

*This is rather remarkable and it is therefore very instructive to try to construct a spider with five arms and understand the

obstruction!

A picture is worth a thousand words.



118 2 Classical Fractals and Self-Similarity
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Figure 2.56 : Construction of a spider with six arms using symmetry and a recursive construction.
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Figure 2.57 : The Sierpinski carpet houses any one-dimensional object: lines, squares, figure “8” like shapes,
five-arm spiders or even deformed versions of the Sierpinski gasket (this is not shown — can you construct it?).
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2.8 Julia Sets

Gaston Julia (1893-1978) was only 25 when he published his 199-page
masterpiece™ in 1918, which made him famous in the mathematics centers
of his day. As a French soldier in the First World War, Julia had been severely
wounded, as a result of which he lost his nose. Between several painful
operations, he carried on his mathematical research in a hospital. Later he
became a distinguished professor at the Ecole Polytechnique in Paris.

Gaston Julia

Gaston Julia, 1893-1978, one of
the forefathers of modern dynamical
systems theory.

Figure 2.58

Although Julia was a world-famous mathematician in the 1920’s, his work Julia’s Work Was
was essentially forgotten until Mandelbrot brought it back to light at the end Famous in the 1920’s
of the seventies through his fundamental experiments. Mandelbrot was intro-
duced to Julia’s work through his uncle Szolem Mandelbrojt, who was a math-
ematics professor in Paris and the successor of Jacques Salomon Hadamard
at the prestigious College de France.

Mandelbrot was born in Poland in 1924, and after his family had emigrated
to France in 1936, his uncle felt responsible for his education. Around 1945,
his uncle recommended Julia’s paper to him as a masterpiece and source of
good problems, but Mandelbrot didn’t like it. Somehow he could not relate
to the style and kind of mathematics which he found in Julia’s paper and
chose his own very different course, which, however, brought him back to
Julia’s work around 1977 after a path through many sciences, which some
characterize as highly individualistic or nomadic. With the aid of computer
graphics, Mandelbrot showed us that Julia’s work is a source of some of

38G. Julia, Mémoire sur Uiteration des fonctions rationnelles, Journal de Math. Pure et Appl. 8(1918) 47-245.
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the most beautiful fractals known today. In this sense, we could say that this
masterpiece is full of classical fractals which had to wait to be kissed awake by
computers. In the first half of this century Julia was indeed world famous. To
learn about his results, Hubert Cremer organized a seminar at the University of
Berlin in 1925 under the auspices of Erhard Schmidt and Ludwig Bieberbach.
The list of participants reads almost like an excerpt of a ‘Who’s Who’ in
mathematics at that time. Among them were Richard D. Brauer, Heinrich
Hopf, and Kurt Reidemeister. Cremer also produced an essay on the topic
which contains the first visualization of a Julia set (see figure 2.59).39

208

Husexr Orewen: First Visualization

A

As

bl A4 A A B,
3. Den Bereich B}, der den unendlich fernen Punkt enthilt und
vom ganzen polygonalen Zug p, begrenzt wird.

Wir gehen von zwei gleichseitigen Dreiecken A A4, 4, 4, und First drawing by Cremer in 1925 vi-
A A A, A, mit der Seite o aus, die an der Ecke A, aneinander- sualizing a Julia set.

stoBen (Fig. 2). Sie bil-
den zusammen dem ge-
schlossenen polygonalen
g Iugp =A A, 4,4 4,
q der die Ebene in 3 Be-
reiche teilt:
1, Das Innere von
A A, A, Ay: B,
A 2. Das Innere von
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Figure 2.59

The Quadratic
Feedback System

The Julia Set
Dichotomy

Julia sets live in the complex plane. They are crucial for the understanding
of iterations of polynomials like 22 + ¢, or 3 + ¢, etc. A detailed introduction
will be given in chapter 13, but here we assume that you are familiar with
the concept of complex numbers. If you aren’t, we propose that for now you
simply think of real numbers. Let us look at £2 + ¢ as an example. Iterating
means that we fix ¢ and choose some value for z and obtain 22 4+ ¢. Now
we substitute this value for x and evaluate 2 + ¢ again, and so on. In other
words, for an arbitrary but fixed value of ¢ we generate a sequence of complex
numbers

z—ox+ce— (@4 +e— (P40 +c)+ec— ...
This sequence must have one of two following properties:

e cither the sequence becomes unbounded: the elements of the sequence leave
any circle around the origin;

e or the sequence remains bounded: there is a circle around the origin which
is never left by the sequence.

The collection of points which lead to the first kind of behavior is called the
escape set for ¢, while the collection of points which lead to the second kind

H. Cremer, Uber die lteration rationaler Funktionen, Jber. d. Dt. Math.Verein. 33 (1925) 185-210.
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Some Samples of Julia Sets

Figure 2.60
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The Julia Set

of behavior is called the prisoner set for c. This terminology has already been
used in the section on the Cantor set. Both sets are nonempty. For example,
given c, then for z sufficiently large, 22 + c is even larger than x. Thus, the
escape set contains all points x which are very large. On the other hand, if we
choose T so that z = x2 + ¢, then iteration remains stationary. Starting with
such an z the sequence produced by the iteration will be constant z,x, z.. ...
In other words, neither can the prisoner set be empty.

Both sets cover some part of the complex plane and complement each
other. Thus, the boundary of the prisoner set is simultaneously the boundary
of the escape set, and that is the Julia set for ¢ (or rather % + o). Figure 2.60
shows some Julia sets obtained through computer experiments.

Is there self-similarity in the Julia sets? Already from our first crude figure
it seems obvious that there are structures that repeat at different scales. In fact,
any Julia set may be covered by copies of itself, but these copies are obtained
by a nonlinear transformation. Thus, the self-similarity of Julia sets is of a
very different nature as compared to the Sierpinski gasket, which is composed
of reduced but otherwise congruent copies of itself.
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2.9 Pythagorean Trees

Pythagoras, who died at the beginning of the fifth century B.C., was known to
his contemporaries, and later even to Aristotle, as the founder of a religious
brotherhood in southern Italy, where Pythagoreans played a political role in
the sixth century B.C. The linking of his name to the Pythagorean theorem
is, however, rather recent and spurious. In fact, the theorem was known
long before the life-time of Pythagoras. An important discovery ascribed to
Pythagoras, or in any case to his school, is that of the incommensurability of
side and diagonal of the square; that is, the ratio of diagonal and side of the
square is not equal to the ratio of two integers.

The Pythagorean Theorem
a2 + b2 — c2

Figure 2.61

The Incommensurability of
Side and Diagonal of the
Square

The discovery that the ratio of diagonal and side of the square is
not equal to the ratio of two integers produced the necessity to
extend the number system to irrational numbers. The length of the
diagonal in the unit square, V2, is irrational. Let us give the argu-
ment. Assume that p and g are positive integers with V2 = p/q.
We may also assume that p and ¢ have no common divisor. Then
p? = 2¢?, i.e., p?> must be an even number. But this implies that p
itself must be even, because the square of an odd number is odd.
Thus p = 2r. Butthen p? = 2¢* means that 472 = 2¢° or 272 = ¢?,
which means that ¢ must be even as well. But this contradicts the
assumption that p and g have no common divisor. Thus, V2 is irra-
tional. This proof is found in the tenth book of Euclid around 300 B.C.

The computation of square roots is a related problem and has inspired

mathematicianstodiscoversome wonderful geometric constructions. One of
them allows us to construct /7 for any integer n. It could be called the square
root spiral, and it is a geometric feedback loop. Figure 2.62 explains the idea.

The construction which yields the family of Pythagorean trees and their
relatives is very muchrelated to the construction of the square root spiral. The
construction proceeds along the following steps and is shown in figure 2.63.

The Construction of
Pythagorean Trees
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The Square Root Spiral

Construction of a square root spi-
ral. We begin with aright-angled tri-
angle so that the sides forming the
right angle are of length 1. Then the
hypotenuse is of length v/2. Now
we continue by constructing another
right triangle so that the sides adja-
cent to the right angle have length 1
and v/2. The hypotenuse of that tri-
angle has length /3, and so on.

Figure 2.62

Pythagorean Tree
Construction
|
1 M O
] [
step 1 step 2 ,,,:]
£
L]
step 3 step 9

Figure 2.63

Step 1: Draw a square.

Step 2: Attach a right triangle to one of its sides along its hypotenuse (here
with two equal sides).

Step 3: Attach two squares along the free sides of the triangle.

Step 4: Attach two right triangles.

Step 5: Attach four squares.

Step 6: Attach four right triangles.

Step 7: Attach eight squares.

Once we have understood this basic construction we can modify it in
various ways. For example, the right triangles which we attach in the process
need not be isosceles triangles. They can be any right triangle. But once we
allow such variations we have, in fact, an additional degree of freedom. The
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Two Constructions with 7
\

Non-Isosceles Triangles _

Ps:

Figure 2.64

right triangles can always be attached in the same orientation, or we may flip
their orientation after each step. Figure 2.64 shows the two possibilities.

Figure 2.65 shows the results of these constructions after some 50 steps. It
is most remarkable that the only thing which we have changed is the orientation
of the triangles, not their size. The results, however, could not look more
different. In the first case we see some kind of spiraling leaf, while the second
reminds us of a fern or pine tree. Note that in the bottom construction in figure
2.65 we see a major stem from which branches radiate off in a right, left, right,
left, ...pattern. This seems to be quite different in the other construction.
There we see a major stem which curls and from which we have only a
branching away to one side. Would you have guessed that both ‘plants’ derive
from the same feedback principle? Didn’t they look at first as if they belonged
to totally different families? They are, however, very close relatives, and this
becomes apparent when analyzing the corresponding construction processes.
This is one way that fractals may help to introduce new tools into botany.
The biologist Aristid Lindenmayer (1925-1989) introduced the concept of
L-systems along these lines, and we will discuss that approach in some detail
in chapter 7.

Let us continue to look into our primitive, but amazing, constructions using
some other modifications. Why not take just any kind of triangle? To keep
some regularity we should take similar ones. This opens the door to a large
variety of fascinating forms which range from plant-like ones to tilings to who
knows what. In figure 2.66 we have attached equilateral triangles, and notice
that the construction becomes periodic.

Passing from equilateral triangles to isosceles triangles with angles greater
than 90° yields another surprise — a form which is broccoli-like (see figure
2.67). These constructions raise anumber of interesting questions. When does
the construction lead to an overlap? By what law do the lengths of the sides of
the triangles or squares decrease in the process? Moreover, we have beautiful
examples of structures which are self-similar, i.e., each structure subdivides



2.9 Pythagorean Trees 127

Figure 2.65 : The two constructions carried out some 50 times. Note that the size of the triangles is the same in
both.
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Periodic Tiling

Figure 2.66

Broccoli-Like Pythagoras Tree

Construction with isosceles triangles
which have angle greater than 90°.

Figure 2.67

during construction into two major branches, and these again into two major
branches, and so on; and each of these branches is a scaled down version of
the entire structure.

Our gallery of historical fractals ends here, though we have not dis-
cussed the contributions of Henry Poincaré, Karl Weierstral3, Felix Klein,
L. F. Richardson, or A. S. Besicovitch. They all would deserve more space
than we could give them here, but we refer the interested reader to Mandel-
brot’s book.*

“°B. Mandelbrot, The Fractal Geometry of Nature, Freeman, New York, 1982.



Chapter 3

Lim and Self-Similarity

Now, as Mandelbrot points out [...] nature has played a joke on the math-
ematicians. The 19th-century mathematicians may have been lacking in
imagination, but nature was not. The same pathological structures that the
mathematicians invented to break loose from 19th-century naturalism turn
out to be inherent infamiliar objects all around us in nature.

Freeman Dyson'

Dyson is referring to mathematicians, like G. Cantor, D. Hilbert, and
W. Sierpinski, who have been justly credited with having helped to lead math-
ematics out of its crisis at the turn of the century by building marvelous abstract
foundations on which modern mathematics can now flourish safely. Without
question, mathematics has changed during this century. What we see is an
ever-increasing dominance of the algebraic approach over the geometric. In
their striving for absolute truth, mathematicians have developed new standards
for determining the validity of mathematical arguments. In the process, many
of the previously accepted methods have been abandoned as inappropriate.
Geometric or visual arguments were increasingly forced out. While Newton’s
Principia Mathematica, laying the fundamentals of modern mathematics, still
made use of the strength of visual arguments, the new objectivity seems to
require a dismissal of this approach. From this point of view, it is ironic that
some of the constructions which Cantor, Hilbert, Sierpinski and others cre-
ated to perfect their extremely abstract foundations simultaneously hold the
clues to understanding the patterns of nature in a visual sense. The Cantor
set, Hilbert curve, and Sierpinski gasket all give testimony to the delicacy and
problems of modern set theory and at the same time, as Mandelbrot has taught
us, are perfect models for the complexity of nature.

Finding the right abstract formulation for the old concept of a limit was
part of the struggle to build a safer foundation for modern mathematics. As we
know, the concept of limits is one of the most powerful and fundamental ideas

'Freeman Dyson, Characterizing irregularity, Science 200 (1978) 677-678.
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Romanesco

The new bread romanesco, a cross-
ing between cauliflower and broc-
coli, exhibits striking self-similarity.

Figure 3.1

in mathematics and the sciences. At the same time, it is one which troubles
many nonmathematicians. This is very unfortunate, especially because of the
fact that contemporary mathematics seems to tell us that the concept of limits is
trivial. The truth is, of course, that building the right mathematical framework
for the understanding of limits took the best mathematicians thousands of
years. It is therefore very inappropriate for us to ignore the problems of
nonmathematicians today, for they are sometimes of the same quality and
depth as those which puzzled the great mathematicians in the past.
Self-similarity, by contrast, seems to be a concept which can be understood
without any trouble. The term self-similarity hardly needs an explanation.
One would guess that the term has been around for centuries, but it has not.
It is only some 25 years old. The new bread romanesco, a crossing between
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Plate 2: Cast of a child’s kidney, venous and arterial system,
© Manfred Kage, Institut fir wissenschaftliche Fotografie.

Plate 3: Broccoli Romanesco.



Plate 4: Wadi Hadramaut, Gemini IV image, © Dr. Vehrenberg KG.

Plate 5: Broccoli Romanesco, detail.



Plate 6: Fractal forgery of a mountain range with Mandelbrot sky, © R.F. Voss.

Plate 7: Fractal forgery of mountain
range (top left), inverted mountain
range, showing valleys as mountains
and mountains as valleys (bottom left),
inverted mountain range rendered as
cloud pattern (top right) used in Plate 6,
© R.F. Voss.




Plate 9: Fractal Moon Craters, © R.F. Voss.



Plate 10: “Zabriski Point”, fractal forgery of a mirage, © K. Musgrave, C. Kolb, B.B. Mandelbrot.

Plate 11: “Carolina”, fractal forgery, © K. Musgrave.



Plate 12: Fractal forgery of planet rise, © K. Musgrave.

Plate 13: “Ein kleines Nachtlicht”, fractal forgery, stereoscopic image. View the left image with
your right eye and the right image with your left eye. © K. Musgrave, C. Kolb, B.B. Mandelbrot.



Plate 14: Dawn over the Himalayas, Gemini IV image, © Dr. Vehrenberg KG.
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cauliflower and broccoli, illustrates the concept (see figure 3.1 and the color
plates 3 and 5). Macroscopically we see a form which is best described as
a cluster. That cluster is composed of smaller clusters, which look almost
identical to the entire cluster, however scaled down by some factor. Each of
these smaller clusters again is composed of smaller ones, and those again of
even smaller ones. Without difficulty we can identify three generations of
clusters on clusters. The second, third, and all the following generations are
essentially scaled down versions of the previous ones. In a rough sense, this
is what we call self-similarity,

We will see that a rigorous discussion of the concept of self-similarity is
intimately related to the concept of limit, and therefore it will require some
care. The visual observation in nature, however, is simple and immediate.
Once one has been introduced to this basic phenomenon, it is hard to walk
through the fields and woods without constantly examining plants and other
structures.

Fractals add a new dimension to the problems of dealing with limits; but
also — and this is our point here — arefreshingly new perspective from which
to understand the concept of limits. On one hand fractals may visualize the
limit object in a feedback process; on the other hand some fractals demonstrate
self-similarity in its purest form. In fact, many fractals can be completely
characterized and defined by their self-similarity properties.
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3.1 Similarity and Scaling

Self-similarity extends one of the most fruitful notions of elementary ge- What Is Similarity?
ometry: similarity. Two objects are similar if they have the same shape,

regardless of their size. Corresponding angles, however, must be equal, and

corresponding line segments must all have the same factor of proportionality.

For example, when a photo is enlarged, it is enlarged by the same factor in

both horizontal and vertical directions. Even an oblique, i.e., nonhorizontal,

nonvertical, line segment between two points on the original will be enlarged

by the same factor. We call this enlargement factor the scaling factor. The

transformation between the objects is called similarity transformation.

Similarity Transformations Similarity transformations are compositions involving a scaling, a ro-
tation and a translation. A reflection may additionally be included, but
we skip the details of that. Let us be more specific for similarity trans-
formations in the plane. Here we denote points P by their coordinate
pairs P = (z,y). Let us apply scaling, rotation and translation to one
point P = (z,y) of a figure. First, a scaling operation, denoted by S,
takes place, yielding a new point P* = (z’,v’). Informulas,

' = sz,

y = sy,
where s > 0 is the scale factor. A scale reduction occurs, if s < 1,
and an enlargement of the object will be produced when s > 1. Next,
a rotation R is applied to P/ = (z',y’), vyielding P = (", y"):

z" = cosf@ -z’ —sinb -y,
= sinf -2’ +cosf -y’

<
I

This describes a counterclockwise (mathematically positive) rotation of
P’ about the origin of the coordinate system by an angle of #. Finally,
a translation 7 of P"' by a displacement (7%, T,) is given by

:L./// — x/l + T
- Ty
yll/ — y/l + Ty

which yields the point P = (z"’,4"""). Summarizing, we may write
P" =T(P") = T(R(P")) = T(R(S(P)))

or, using the notation
W(P) = T(R(S(P))),

wehave P’ = W{P). W isthe similarity transformation. In formulas,

" = scos@ . -x —ssinf -y +T,,

1

y" = ssin@ -z +scost-y+T,.

Applying W to all points of an object in the plane produces a figure
which is similar to the original.
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Clll

Bm

Figure 3.2 : A similarity transformation is applied to the triangle ABC. The
scaling factoris s = 2, the rotation is by 270°, and the translation is given by

T, =0and T, = L

The similarity transformations can also be formulated mathemati-
cally for objects in other dimensions, for example, for shapes in three
or only one dimension,
real line, and the similarity transformation can simply be written as
W(x)=sx+t s#0.

In the latter case we have points = on the

Scaling
Three-Dimensional
Objects

Consider a photo which is enlarged by a factor of 3. Note that the area
of the resulting image is 3 - 3 = 32 = 9 times the area of the original. More
generally, if we have an object with area A and scaling factor s, then the
resulting object will have an area which is s - s = s? times the area A of
the original. In other words, the area of the scaled up object increases as the
square of the scaling factor.

What about scaling three-dimensional objects? If we take a cube and
enlarge it by a scaling factor of three, it becomes three times as long, three
times as deep, and three times as high as the original. We observe that the area
of each face of the enlarged cube is 32 = 9 times as large as the face of the
original cube. Since this is true for all six faces of the cube, the total surface
area of the enlargement is nine times as much as the original. More generally,
for objects of any shape whatever, the total surface area of a scaled-up object
increases as the square of the scaling factor.

What about volume? The enlarged cube has three layers, each with 3.3 = 9
little cubes. Thus the total volume is 3 -3 - 3 = 3% = 27 times as much as the
original cube. In general, the volume of a scaled up object increases as the
cube of the scaling factor.

These elementary observations have remarkable consequences, which
were the object of discussion by Galileo (1564-1642) in his 1638 publication
Dialogues Concerning Two New Sciences. In fact Galileo® suggested 300

*We quote D’Arcy Thompson’s account from his famous 1917 On Growth and Form (New Edition, Cambridge University
Press, 1942, page 27): “[Galileo] said that if we tried building ships, palaces or temples of enormous size, yards, beams and
bolts would cease to hold together; nor can Nature grow a tree nor construct an animal beyond a certain size, while retaining the
proportions and employing the material which suffice in the case of a smaller structure. The thing will fall to pieces of its own
weight unless we either change its relative proportions, which will at length cause it to become clumsy, monstrous and inefficient,
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Galileo Galilei’s Dialogues

Concerning Two New D I S C 0 R S l

Sciences, 1638 E
DIMOSTRAZIONI
MATEMATICHE,
intorno & due nuoue [ecienz.e

Attenenti alla
MEecanNica & 1 MovimenT: LocaLs

del Signor

GALILEO GALILEI LINCE O,

Filofofo ¢ Matematico primario del Sereniffimo
Grand Duca di Tofcana.

Convma Appendicedelcentro di granira & aleuni Solids,

IN LEIDA,
Appreflo gli Elfevirii. . p. ¢, xxxvur.

Figure 3.3

feet as the limiting height for a tree. Giant sequoias, which live only in the
Western United States and hence were unknown to Galileo, grow as high as
360 feet. However, Galileo’s reasoning was correct; the tallest giant sequoias
adapt their form in ways that evade the limits of his model.

What was his reasoning? The weight of a tree is proportional to its volume.
Scaling up a tree by a factor s means that its weight will be scaled by s3. At
the same time the cross-section of its stem will only be scaled by s?. Thus

or else we must find new material, harder and stronger than was used before. Both processes are familiar to us in Nature and in art,
and practical applications, undreamed of by Galileo, meet us at every turn in this modern age of cement and steel.”
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Magnifying a Logarithmic
Spiral

The magnifying ofalogarithmic spi-
ral by a factor b shows the same spi-
ral, however, rotated by an angle 6
| (about 210°).

Figure 34

Ammonite

The growth pattern of an ammonite
follows a logarithmic spiral.

Figure 3.5

the pressure inside the stem would scale by s3/s% = s. That means that if s
increases beyond a certain limit, then the strength of wood will not be sufficient
to bear the corresponding pressure.’

This tension between volume and area also explains why mountains do
not exceed a height of 7 miles, or why different creatures respond differently
to falling.* For example, a mouse may be unharmed by a ten-story fall, but

*Here is a related problem. Suppose a nail in a wall supports some maximum weight w; how much weight would a nail which
is twice as big support?
“See I. B. S. Haldane, On Being the Right Size, 1928, for a classic essay on the problem of scale.



136 3 Limits and Self-Similarity

a man may well be injured by just falling from his own height. Indeed, the
energy which has to be absorbed is proportional to the weight, i .e., proportional
to the volume of the falling object. This energy can only be absorbed over
the surface area of the object. With scaling up, volume, hence weight, hence
falling energy, goes up much faster than area. As volume increases the hazards
of falling from the same height increase.

In chapter 4 we will continue to discuss scaling properties. In particular Similarity and Growth
we will look at spirals, as for example the logarithmic spiral. We all have seen of Ammonites
how a spiral drawn on a disk seems to grow continuously as it is turned around
its center. In fact, the logarithmic spiral is special in that magnifying it is the
same as rotating the spiral. Figure 3.4 illustrates this remarkable phenomenon,
which as such is another example of a self-similar structure. Figure 3.5 shows
an ammonite which is a good example of a logarithmic spiral in nature. In
other words, an ammonite grows according to a law of similarity. It grows in
such a way that its shape is preserved.

Most living things, however, grow by a different law. An adult is not Babies Are Not Similar
simply a baby scaled up. In other words, when we wonder about the similarity to Their Parents
between a baby and its parents we are not talking about (the mathematical term
of) geometric similarity! In the growth from baby to adult, different parts of
the body scale up, each with a different scale factor. Two examples are:

¢ Relative to the size of the body, a baby’s head is much larger than an adult’s.
Even the proportions of facial features are different: in a baby, the tip of
the nose is about halfway down the face; in an adult, the nose is about two
thirds above the chin. Figure 3.6 illustrates the deformation of a square grid
necessary to measure the changes in shape of a human head from infancy to
adulthood.

e If we measure the arm length or head size for humans of different ages and
compare it with body height, we observe that humans do not grow in a way
that maintains geometric similarity. The arm, which at birth is one-third as
long as the body, is by adulthood closer to two-fifths as long. Figure 3.7
shows the changes in shape when we normalize the height.

In summary, the growth law is far from being a similarity law. A way to Isometric and
get insight into the growth law of, for example, the head size versus the body Allometric Growth
height, is by plotting the ratio of these two quantities versus age. In table
3.8, we list these data for a particular person.” Entering the ratio and the age
in a diagram we obtain figure 3.9. If the growth were proportional, that is,
according to similarity, the ratio would be constant throughout the lifetime
of the person, and we would have gotten all points on a straight horizontal
line. Graphing therefore provides a way to test for proportional growth. In
our example we do not have an overall proportional growth. We can discern
two different phases: one that fits early development, up to the age of about
three years, and another that fits development after that time. In the first period

The data in this table is taken from D’ Arcy Thompson, On Growth and Form. New Edition, Cambridge University Press,
Cambridge, 1942, page 190.
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0.42 0.75 2.75 6.75 12.75 25.75

Nonlinear Growth

The head of a baby and an adult are
not similar, i.e., they do not trans-
form by a simple scaling. Figure
adapted from For All Practical Pur-
poses, W. H. Freeman, New York,
1988.

Figure 3.6

Changing Proportions

Changes in shape between 0.5 and
25 years. Height is normalized to 1.
Figure adapted from For All Practi-
cal Purposes, W. H. Freeman, New
York, 1988.

Figure 3.7

we have proportional growth, sometimes called isometric growth. After the
age of three years, however, the ratio drops significantly, indicating that body
height is growing relatively faster than head size. This is called allometric
growth. At about the age of 30 the growth process is completed and the
ratio is constant again. A more sophisticated analysis of this data yielding
mathematical growth laws will be presented in the next chapter. In fact, the
well-known phenomenon of nonproportional growth above is at the heart of

fractal geometry, as we will see shortly.

Having discussed similarities and

ways of scaling, let us now return to the central theme of this chapter: what is

self-similarity?
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Head Size Versus Body Height Age | Body Height | Head Size | Ratio
Data (years) (cm) (cm)
Body height and head size of a per- 0 50 11 0.22
son. The last column lists the ra- 1 70 15 0.21
tio of head size to body height. The 2 79 17 022
first few years this ratio is about con- 3 86 18 0.21
stant, while later it drops, indicating 5 99 19 0.19
a change from isometric to allomet- 10 127 21 0.17
ric growth. 20 151 22 0.15
25 167 23 0.14
30 169 23 0.14
Table 3.8 40 169 23 0.14
Graphing Growth ]
ratio
Growth of head relative to height for
the data from table 3.8. On the hor- 0.20 B
izontal axis age is marked off, while ) * S
the vertical axis specifies the head to 0.15 "
body height ratio. '
10 20 30 0 age
Figure 3.9

Intuitively, this seems clear; the word self-similar hardly needs a definition
— itis self-explanatory. However, talking in precise mathematical terms about
self-similarity really is a much more difficult undertaking. For example, in
the romanesco, or for that matter, in any physically existing object, the self-
similarity may hold only for a few orders of magnitude. Below a certain scale,
matter decomposes into a collection of molecules, atoms, and, going a bit
further, elementary particles. Having reached that stage, of course, it becomes
ridiculous to consider miniature scaled-down copies of the complete object.
Also, in a structure like a cauliflower the part can never be exactly equal to
the whole. Some variation must be accounted for. Thus, it is already clear at
this point that there are several variants of mathematical definitions of self-
similarity. In any case, we like to think of mathematical fractals as objects
which possess recognizable details at all microscopic scales — unlike real
physical objects. When considering cases of fractals where the small copies,
while looking like the whole, have variations, we have so-called statistical
self-similarity, a topic which we will get back to in chapter 9. Moreover,
the miniature copies may be distorted in other ways, for example, somewhat
skewed. For this case there is the notion of self-affinity.

What Is
Self-Similarity?
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Blowup of Koch Curve

One-quarter of the Koch curve (top)
is magnified by a factor of 3. Due to
the self-similarity of the Koch curve
the result is a copy of the whole
curve.

Self-Similarity of the
Koch Curve

Different Degrees of
Self-Similarity

Figure 3.10

To exemplify the concept, we choose the Koch curve which is already
familiar from the second chapter. Can we find similitudes (similarity transfor-
mations) in the Koch curve? The Koch curve looks like it is made up of four
identical parts. Let us look at one of these, say the one at the extreme left. We
take a variable zoom lens and observe that at exactly x3 magnifying power
the little piece seems to be identical to the entire curve. Each one of the little
pieces breaks into four identical pieces again, and each of them seems to be
identical to the entire Koch curve when we apply a magnifying lens of x9, and
so on ad infinitum. This is the self-similarity property in its mathematically
purest form.

But even in this case, where copies of the whole appear at all stages and
are exact and not distorted in any way, there are still various degrees of self-
similarity possible. Consider, for example, a cover of a book that contains
on it a picture of a hand holding that very book. Surprisingly, this somewhat
innocent-sounding description leads to a cover with a rather complex design.
As we look deeper and deeper into the design, we see more and more of the
rectangular covers. Contrast that with an idealized structure of a two-branch
tree as shown in figure 3.11. Also pictured is the self-similar Sierpinski gasket.
All three examples are self-similar structures: they contain small replicas of
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Three Different Self-Similar
Structures A s L P g ol
The Sierpinski gasket (left) is self- Vv i ‘ -
. =Y iy oy y " Ay
similar at all of its points, while . 5}""?&;\ alis S _?\II_}
the two-branch tree (middle) is self- ‘f‘é‘“‘@w““‘“}_ .
similar only at the leaves. The struc- £ i |
S o Ev- Vv Py Vv-y -
ture on the right is self-similar only é% A |
at the center point. ﬁ&ﬂfﬁfﬁ?}%; v\ |
Figure3.11
the whole. However, there is a significant difference. Let us try to find points
which have the property that we can identify small replicas of the whole in
their neighborhoods at any degree of magnification.
In the case of the book design, the copies are arranged in one nested Self-Similarity
sequence, and clearly the self-similarity property can be found only at one at a Point

particular point. This is the limit point at which the size of the copies tends
to zero. The book cover is self-similar at this point.
The situation is much different in the two-branch tree. The complete tree Self-Affinity
is made up of the stem and fwo reduced copies of the whole. Thus, smaller
and smaller copies accumulate near the leaves of the tree. In other words, the
property of self-similarity condenses in the set of leaves. The whole tree is
not strictly self-similar, but self-affine. The stem is not similar to the whole
tree but we can interpret it as an affine copy which is compressed to a line.
Finally, in the Sierpinski gasket, similar to the Koch curve above, we Strict Self-Similarity
can find copies of the whole near every point of it, which we have already
discussed. The gasket is composed from small but exact copies of itself.
Considering these differences, we call all three objects self-similar, while only
the Sierpinski gasket and the Koch curve are in addition called strictly self-
similar. Also the set of leaves without the stem and all the branches is strictly
self-similar. Now what would a cauliflower be in these categories? It would be
a physical approximation of a self-similar, but not strictly self-similar, object
akin to the two-branch tree.
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3.2 Geometric Series and the Koch Curve

Fractals such as the Koch curve, the Sierpinski gasket and many others are
obtained by a construction process. Ideally, however, this process should never
terminate. Any finite stage of it produces an object, which may have a lot of
fine structure, depending on how far the process has been allowed to proceed,
but essentially it still is far from a true fractal. Thus, the fractal only exists as
an idealization. It is what we would get if we let the process run ‘indefinitely’.
In other words, fractals really are limit objects, and their existence is not as
natural as it may seem. This is important, and the mathematical foundation of
such limits is one of the goals of this chapter and some others.

Limits often lead to new quantities, objects or qualities; this is true par-
ticularly for fractals (we will come back to that later on). However, given
a sequence of objects, there are cases where it is not immediately obvious
whether a limit exists at all. As for example, the first sum in

21 1 1 1 =1 1
Z;—I-Fi'f‘g‘f"", z_:k——"‘f' +9+

is divergent6 (i.e., the sum is infinite) whereas the second one converges to
72 /6, as shown by Euler.

Let us recall for a moment the discussion of geometric series. For a given
number —1 < ¢ < 1 the question is, does

o0

Yo =1+q++*+
k=0

have a limit, and what is the limit? To this end one defines
Sn=1+q+¢*+¢ + - +q"
Then on the one hand we have S,, — ¢S, =1 — q"“, and on the other hand
Sn — qSn = Sn(1 — q). Putting these two identities together we obtain
1 - n+1
Sp= 129 3.
1-¢

In other words, as n becomes larger, q"+1 becomes smaller, which means that
Sy, gets closer and closer to 1/(1 — g). In short, we have justified

>, 1
Z gF = T (3.2)
k=0 q

The sum 1 + 1/2 + 1/3 + 1/4 +--- is infinite. An argument for this fact goes as follows. Assume that the sum has a finite value,

say S. Then, clearly 1/2 + 1/4 + 1/6+--- = S/2. It follows that 1 +1/3+1/5+--- = S— (1/2+1/4+1/6+---) = S/2.
But also since 1 > 1/2, 1/3 > 1/4, 1/5 > 1/6,--- we must have that 1 + 1/3 + 1/5 + --- > 1/2 + 1/4+ 1/6 +---. This is
a contradiction, as both sums should equal S/2. Therefore, our assumption, namely, that the sum 1 + 1/2 + 1/3 + --- = S, must

be wrong. A finite limit of this sum cannot exist.
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Koch Island Construction
The Koch island is the limit ob-
ject of the construction and has area
T 13T — TU3x(1/3
T U3x(1/3T) 19T — T U 3x(1/37)
U 12x(1/9T)
|
| A I
T U3x(1/37) 2T —» T U 3x (1/3
U 12x(1/97) zzx(th)
I 48 ><( 127T)
Figure 3.12 _ _

This is one of the elementary limit considerations which is useful,7 even
though the limit 1/(1 — g) is not at all enlightening. Nevertheless, it will help
us to understand a particular point about fractal constructions. In theory S,

"Remember, for example, the problem of understanding infinite decimal expansions of the form 0.1543909 ... We know that
it is just 0.1544, but why? Well, first 0.1543999 ... = 0.1543...4+9-10"°(1 + 10~ " +102 4-.. ). Then one can apply eqn.
(3.2) with ¢ = 107" and obtain 1 + 107! + 1072 +. .- = 10/9. Thus, 9- 10~ (L + 107! + 1072 4+...) = 9. 107> 10/9.
whichis 107 Finally, 0.1543999 . .. = 0.1543 + 10" ¥ = 0.1544.
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The Construction
Process of Geometric
Series

The Construction
Process of the Koch
Island

The Area of the Koch
Island

will be different from the limit 1/ (1 — g), no matter how large we choose n.
But practically — for example, in a finite accuracy computer — both will be
indistinguishable provided n is large enough.

The geometric series has an analogy in the construction of basic fractals.
There is an initial object, here the number 1, and a scaling factor, here gq. The
important property of the scaling factor is that it be less than 1 in magnitude.
Then there is a construction process.

Step 1: Start with 1.

Step 2: Scale down 1 by the scaling factor q and add.
Step 3: Scale down 1 by the scaling factor ¢ - g and add.
Step 4: ...

The point is that this infinite construction leads to a new number, repre-
senting that process — the limit of the geometric series.

The Koch island, which we see in its basic construction in figure 3.12, is
obtained in an analogous manner, except that rather than adding up numbers,
we ‘add up’ geometrical objects. ‘Addition’, of course, is here interpreted as
a union of sets; and the important point is that in each step we add a certain
number of scaled down versions of the initial set.

Step 1: We choose an equilateral triangle T with sides of length a.

Step 2: We scale down T by a factor of 1/3 and paste on three copies of the
resulting little triangle as shown. Now the island is bounded by 3 - 4
line segments, each of length a/3.

Step 3: We scale down T by a factor of 1/3 - 1/3 and paste on 3 - 4 copies of
the resulting little triangle as shown. The resulting island is bounded
by 3 - 4 - 4 straight line segments, each of length 1/3-1/3 - a.

Step 4: ...

The point here is that this infinite construction leads to a new geometric
object, the Koch island. In fact, the analogy between the geometric process
and geometric series goes much further. Let us get a first impression. What
is the area of the Koch island, the geometric object which we see as a limit of
the above process?

Well, let us try to figure out how much area we add in each step. At
the beginning we have the area A; for the initial triangle 7, and calculate
Ay = V3 /4 a?. In each step k, we have to add the area of ny, little equilateral
triangles with sides si. Convince yourself that ny = 3,19 = 3-4,n3 = 3-4-4,

..Thus, ng = 3-45~1, The sides s of the little triangles are obtained by
successively scaling down the side of the original triangle by a factor 1/3.
Therefore, sx = (1/3)*a. Combining these results we get

V3 V3 o1
Agy1 = A +ni- T z Ar+3- 4k-1 T‘SWG?
o)

/3
Ak+—1—2—
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In other words, if we develop the terms step by step we have the series

3 4 42 4’“‘1
\1/2_<1+ + =+ )a

Apy1 = AL + 5t 3 torT

The expression in the parentheses is a partial sum of the geometric series

1+ g— + g; + %; + -+ which has the l[imit 1= 4/9 = % That means that the

Koch island, the geometric object in the limit, has area

V3.9 ,
125"

and since A; = v/3/4 - a2, we finally obtain

- §ﬁ2

A=A+

This is quite aconvincing argument that there is indeed a new geometric object
resulting from the infinite process. But a rigorous argument would need much
more.

It would need a language which would allow us to talk about the process of
adding new and smaller shapes in the above construction exactly in the same
way as is used to discuss adding smaller and smaller numbers in a series. In
fact, this language already exists. One of the great achievements of what is
called point set topology was to extend the idea of limits as known when dealing
with numbers to far-reaching abstractness. This, together with a notion called
Hausdorff distance, which is a generalization of the usual distance between
points to the distance between two point sets, provides the right framework
in which we can indeed find a perfect analogy between the infinite process of
adding numbers in a geometric series and its limit behavior on the one hand,
and the infinite adding of smaller and smaller triangles in the Koch island
construction and its limit behavior on the other. In some sense, nothing new
and exciting happens or has to be understood. Everything isjust an appropriate
translation of how we are used to thinking about geometric series. In that sense
the Koch island is a visualization of the limit of a geometric scries.

Let us now look at properties of the limit, which are not shared by any of Limits Lead to New
its finite stage approximations. The most important property is that of self- Qualities
similarity. For example, the self-similarity of the Koch curve is reflected by
the fact that the curve is made up of four identical parts. Can we actually
verify the self-similarity with our images on paper? Of course not. There are
two reasons: a technical one and a mathematical one.

The technical reason is obvious. Black ink on white paper comes in little The Technical Problem
dots which under a sufficiently high powered microscope look more or less with Demonstrating
like random specks and certainly not like a Koch curve. This effect could be Self-Similarity
called limited resolution and is very similar to the problem of representing
numbers in a computer. Recall that Vv2ina computer representation is never
really /2, but rather some approximation such as 1.414214. Magnifying an
image can be compared with multiplying a number by some factor greater



3.2  Geometric Series and the Koch Curve 145

than 1. For example, if we multiply V2 by V2 again and again we will get
2, 22, 4, 4\/§, 8, 8v/2, ... In other words, we will get powers of V2. 1f we
compute increasing powers of an approximation of v/2, then for a while we
obtain results which are close to the true powers of v/2. But sooner or later
our numerical results will deviate more and more, and they will eventually
totally disagree with our theoretical expectations.

No Self-Similarity at Finite
Stage

Each single construction stage of the
Koch curve does not generate a self-
similar curve. For example, scaling
a part of the stage 3 approximation
(top) by a factor of 3 (bottom) does

\Ca'ed by 3 not yield a curve equal to the stage 3
curve .

Figure 3.13

The Mathematical
Problem with
Demonstrating
Self-Similarity

The mathematical reason for the impossibility of running these experi-
ments on paper is similar. Only the limit structure, but none of the interme-
diate construction stages, has the property of perfect self-similarity; and the
limit structure cannot be obtained by any computer whatsoever. This is very
much like the true and precise numerical value of V2 not being representable
by any computer. It would need infinitely many digits. The only pictures of
the Koch curve which are possible are approximating images. For example,
if we draw an image of the 5™ stage and compare it with an image of the 10th
stage, we do not see a difference. But there is, of course, a dramatic differ-
ence. The change, however, is below the resolution of the device (printer or
screen). No matter which stage we may choose to represent our Koch curve,
it will be indistinguishable from the true image of the Koch curve if the stage
is sufficiently advanced. But theoretically the two objects (i.e., some stage
in the process here and the Koch curve there) are dramatically different. For
example, for advanced stages, the boundary of the respective object is made
by tiny little straight line segments. Thus under sufficient magnification those
will become macroscopically visible. In other words, if we look at one of
the pieces in, say, the 10th stage under the microscope, we will see a piece
which is familiar, say, from the 2nd stage, while magnifications (with the cor-
rect magnifying factor) of the boundary in the limit structure will look exactly
like the Koch curve. Also, an approximation of the Koch curve by any of
its finite stage constructions cannot be self-similar, no matter how accurate
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the approximation is (see figure 3.13). The fact is, however, the Koch curve
contains no straight line segment of any length.®
Another property of the Koch curve, which is not shared by any of its A Second New Quality
finite stage approximations, is that its length is infinite (see section 2.4). As of the Limit Object
the Koch curve is one-third of the boundary of the Koch island, we have that
the boundary of the Koch island is also infinitely long. In contrast to this, the
area of the Koch island is a finite and well-defined number, as seen above.
That, in fact, is the metaphoric message of Mandelbrot’s 1967 article in the
magazine Science, entitled How long is the coast of Britain? We will discuss
this in more detail in chapter 4.

Self-Similarity in Geometric Looking back at the geometric series one may see a remarkable corre-
Series spondence to the self-similarity of the Koch curve. If we formally scale
the series

o0
Y =1tq+at++
k=0

with the factor g, we obtain ¢> po g = g+ ¢* + ¢ +¢* + -
Therefore,

o0 o0
ddb=1+q) ¢~ (3.3)
k=0 k=0

This is the ‘self-similarity’ of the geometric series. The value of the
sum is 1 plus the scaled down version of the whole series. As in the
case of the Koch curve, the self-similarity only holds for the limit but
not for any finite stage. For example, denote Sy = 1+ ¢ + q2, then
14+¢Sy=14+q+¢*+¢* # 52

In summary, we have linked the Koch curve and island to the geometric
series, providing strong evidence for the existence of these fractals. Let us
see in the next two sections how we can approach these objects from another
direction, namely, as solutions of appropriate equations.

$Mathematically it is a continuous curve which is nowhere differentiable. It was invented by Helge von Koch just to provide an
example for such a curve; see H. v. Koch, Une méthode géometrique élémentaire par I’étude de certaines questions de la théorie
des courbes planes, Acta. Mat. 30 (1906) 145-174.
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3.3 Corner the New from Several Sides: Pi and the Square Root of

Two

Limits have always had something mysterious about them, and it would be
a great loss not to communicate that. Therefore, let us make an excursion
and see how limits can reach out into the unknown. Limits create and char-
acterize new quantities and new objects. The study of these unknowns was
the pacemaker in early mathematics and has led to the creation of some of
the most beautiful mathematical inventions. When Archimedes computed 7
by his approximation of the circle by a sequence of polygons, or when the
Sumerians approximated V2 by an incredible numerical scheme, which was
much later rediscovered by no one less than Newton, they were well aware of
the fact that 7 and v/2 were unusual numbers. The beautiful relation between
the Fibonacci sequence 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ... and the golden mean
%(1 + v/5) has, over several centuries, inspired scientists and artists alike to
wonderful speculations. It is almost ironic that mathematics and physics at the
most advanced levels have recently taught us that some of these speculations,
which motivated Kepler, among others, to speculate about the harmony of our
cosmos, have an amazing parallel in modern science: it has been understood
that in scenarios, which describe the breakdown of order and the transition to
chaos, the golden mean number characterizes something like the last barrier of
order before chaos sets in. Moreover, the Fibonacci numbers occur in a most
natural way in the geometric patterns which can occur along those routes.

In this section we focus on twonumbers, # = 3.14 ... and \/Q =141,..,
and their approximations from various directions. While the story of = is
in some sense a diversion from fractals, the central theme of the book, the
other example will be developed along lines which parallel the definition and
approximation of fractals as worked out in the following sections.

The method used by Archimedes for the calculation of 7 is based on
inscribed and circumscribed regular polygons. In our presentation we
use modern mathematical tools such as the sine and tangent functions
which were not known to Archimedes, of course. We start with an
inscribed hexagon to a circle of radius . It has n = 6 sides. The
angle covered by one half side is @ = 7 /6 (see figure 3.14).

The length of the inscribed side is 2r sinf. The length of a side
of the circumscribed hexagon is 2r tan . Thus, for the length of the
circle U = 2mr we have

2rnsind < U < 2rntané.
Dividing by 2r we obtain a lower and an upper estimate for ,
nsinf < 7 < ntanf.

In numbers thisis 3 < m < 3.464, not a very accurate result. But we
can easily improve the result simply by doubling the number n of sides

Archimedes’ Method for 7
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Figure 3.14 : Inscribed and circumscribed regular polygons.

and replacing @ by 8/2, which yields
0 0
2nsin - < 2ntan —.
nsing <7 < 2ntan g

Thisis 3.106 < 7 < 3.215. Furtherdoubling, i.e., going from a regular
polygon of 12 sides to one of 24 sides, and then to 48, 96, and so on,
we can obtain an estimate that can be as sharp as we want. After k
such doubling steps the formula is

0 0
2knsin—2—,c <7 < 2*ntan 2

It is not clear, exactly what method Archimedes used to compute the
sines and tangents. Probably he used an iteration method based on
formulas similar to

f {1 —cost
2 2 !

sin 6
2 7 1+4cosh’

@,
=]
|
It

The computation of the length of a circle, i.e., the computation of m, is 7 and the Length of a
a problem which challenged ancient mathematicians to a great extent. This Circle
problem has a history which is more than 4000 years old. The Old Testament
uses 7 = 3 (see 1. Kings 7:23). The Babylonians used 7 = 3.125 and
the Egyptians’ (around 1700 B.C.) proposed m = 3.1604 ... Also in China
philosophers and astronomers were very active in deriving approximations of
7. One of the best goes back to Zu Chong-Zhi (430-501), who used the value
355/113, which has seven correct digits. At that time Chinese silk was sold as
far as Rome. But it is not clear whether the fundamental work of Archimedes

°In fact they proposed an algorithm for the computation of the area of a circle: take away 1/9 of the diameter and square the
remaining 8/9 of the result.
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was also known to the Chinese. Archimedes was the first (around 260 B.C.)
to provide a definite solution to the problem. He considered the circle with
radius 1 and approximated half of its circumference by a sequence of regular
polygons. In fact, he considered a sequence of approximating regular polygons
which were inscribed and another sequence of regular polygons which were
circumscribed. He carried out the approximation a few steps and obtained the
numerical value 3.141031951 which has already four leading correct digits.
He could have gone to even higher accuracy because his method was absolutely
correct.

A more elegant method was discovered by the medieval scholar and
philosopher Nicolaus Cusanus around 1450. It is another example for a feed-
back system and a forerunner of the very sophisticated methods used nowadays

to compute 7 on mainframe computers up to millions of digits.

Archimedes considered a fixed circle and approximated its circum-
ference by a sequence of polygons. In a way Cusanus turned this
approach around and employed a sequence of regular polygons with
fixed circumference. More precisely, the regular polygons have 27,
n = 2,3,4,... vertices such that the circumference always has length
2! He then computed the length of the corresponding circles which
were inscribed and circumscribed (see figure 3.15).

P i

Figure 3.15 : Initial square and circles in Cusanus’ method. For a given
regular polygon with 2" sides which sum up to a circumference of two units, the
inscribed and circumscribed circles are considered.

Let R,,and r,, denote the radius of the circumscribed and inscribed
circle of the nth polygon. Then we have

2rr, < 2 < 2nR,,

or equivalently

! <r < ! (3.4)
_— ™ . .
R, Tn

For n = 2 we have a square with circumference 2 (see figure 3.15),
and thus we compute using the Pythagorean theorem Ry = V/2/4
and ro = 1/4. Then Cusanus continued to extract the following useful

Cusanus’ Method of
Computation of 7
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n i R, DPn Error

2 | 0.250000 | 0.353553 | 3.313708 | 0.172116
3 | 0.301777 | 0.326641 | 3.182598 | 0.041005
4 | 0.314209 | 0.320364 | 3.151725 | 0.010132
5 0.317287 | 0.318822 | 3.144118 | 0.002526
6 | 0.318054 | 0.318438 | 3.142224 | 0.000631
7 | 0.318246 | 0.318342 | 3.141750 | 0.000158
8 | 0.318294 | 0.318318 | 3.141632 | 0.000039
9 | 0.318306 | 0.318312 | 3.141603 | 0.000010
10 | 0.318309 | 0.318310 | 3.141595 | 0.000002
11 | 0.318310 | 0.318310 | 3.141593 | 0.000001

Table 3.16 : The first few steps of Cusanus’ method for the iterative calculation
of 7. The approximation p,, in the fourth column is computed by pn = 2/(r, +
R,,). The error p,, — m decreases by about a factor of four in each step.

relations from geometric considerations which were already known to
Archimedes, Pythagoras, and others.

R, +ry
T‘n+l = T
Rn+l =V Rnrn+1
forn = 2,3,... It tuns out that r,, < R, forall n and that r,

increases while R,, decreases as n grows. Thus, both sequences
have limits, and these limits must be the same.'® But then egn. (3.4)
implies that the limit must be % It turns out that Cusanus’ method
yields m up to 10 correct decimal places if one computes the feedback
system for up to n = 18. Table 3.16 lists the first eleven steps, the
corresponding approximations of 7, and their errors.

Other Approaches to 7 F. Vieta (1540-1603):
2 V2 V242 V2 V2+02
T2 2 ' 2 o

J. Wallis (1616-1703):
m 22 44 66 8-8

2 1.3 3.5 5.7 7.9

J. Gregory (1638-1675) and G. W. Leibniz (1646—1716):
T 1 1 1 1 1+1 35
4 35 7 9 11 13 -5)

"OIf they were not the same, say Rn, — R and 7, — 7 with 7 # R.then (R+71)/2 # 7, as it should.
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L.Euler (1707-1783):

GG S A S S
6 12 22 32 ' 42 52
™ 1+1+1+1+i+
90 ~ 14 T 24 " 34 34 7 44
C. F. Gauss (1777-1855):
= 48 arct 1+32a tn—l——20arctan 1 (3.6
™= arcan48 rcta) 57 239" .6)

S. Ramanujan (1887—1920):

T

1 V8 i": (4n!)(1103 + 26 390n)
9801 &

(n!)4396%"

J. M. Borwein and P. M. Borwein (1984):

i 1—4/1—22 _
T e /122 -

Ynt1 = (1 +Znt1)’Un — 2" 2nsr o =

Lo

ml.—-«l|
. —
o

With these settings %, converges quadratically to 1/7.

The following is another interesting characterization.'' An integer
is called square free provided it is not divisible by the square of a prime
number. For example, 15 is square free (15 = 3 - 5), but 50 is not
(50 = 2 - 52). Now let A(n) be the number of, and g(n) = h(n)/n be
the fraction of, square free numbers between 1 and n. Then

lim g(n) =

n—oo 2 )

World Records in 7

Like no other irrational number, 7 has fascinated the giants of science as
well as amateurs around the world. For hundreds and even thousands of years
more and more digits of ™ have been worked out using sometimes extremely
tedious methods. This enormous effort stands in absolutely no relation to its
use. It would be hard to find applications in scientific computing, where more
than some 20 digits of w are necessary. Nonetheless, people have been pushing
the number of known digits of 7 higher and higher as if it were a sport like the
high jump, where athletes are driven to equal and surpass the standing world
record. When asking mountaineers about their motivation to painfully climb a
particularly high peak, they very well might answer, that they do it ‘because it
is there’. In this sense the number 7 is even better than Mount Everest because
the number of digits in 7 is unlimited. Once arrived at a world record, there

"'C.R. Wall, Selected Topics in Elementary Number Theory, University of South Carolina Press, Columbia, 1974, page 153.
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is already the challenge to also conquer the next ten, or hundred, or million

digits.

Let us give some examples of the craze that went on in the previous cen-
turies and that is still continuing today with the help of computers. The Dutch
mathematician Ludolph van Ceulen (1540-1610) dedicated a large portion of
his work to the computation of . In 1596 he reported 20 digits of 7, and just
before his death he succeeded in computing 32 and even 35 digits pushing the
method of Archimedes to its extreme: he used inscribed and circumscribed
polygons with 262 x 108 vertices. The last three digits are inscribed on
his tombstone, and henceforth the number m was also known as Ludolph’s

number.

Approximation of m Using
Series and Hand Calculation

Partial list of the world records of the
computation of 7 from 1700 until
computing machines became avail-
able. Only 527 of the 707 digits
computed by Shanks were correct.

Ludolph’s Number

Table 3.17

Machin’s Formula for

Year | Name Digits
1700 | Sharp 72
1706 | Machin 100
1717 | Delaney 127
1794 | Vega 140
1824 | Rutherford 208
1844 | Strassnitzky and Dase | 200
1847 | Clausen 248
1853 | Rutherford 440
1855 | Richter 500
1873 | Shanks 707
1945 | Ferguson 620

In 1706 John Machin discovered an elegant and computable way to
represent 7 as a limit. Before, in 1671, Gregory had discovered that
the area under the curve 1/(1 + z?%) from 0 to = was arctanz. The
arctangent series

arctanz = x z° + 22 + (3.7)
B 3 5 7 '

was a direct conclusion of this. Substituting x = 1 then gives an easy
formula for 7/4; see eqn. (3.5). However, this series is very slowly con-
vergent and, thus, not useful for actual computations. Machin devised a
neat like trick to modify the Gregory series and improve its convergence
dramatically. The derivation is easy using the trigonometric identities

tan o & tan 8

t + =
an(e & ) 1 Ftanatan g

Let 3 be the unique angle less than /4 such that

1
tan g = =.
an g g
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Using the above trigonometric formulas, we compute

2tan 8 z 5
tan28 = = - =
2B = T 1-L 12
and
2tan 23 5 120
tan4g = = 6 = —.
g 1 — tan?243 -2 119

From the last result we see that tan 43 = 1, and therefore 48 ~ 7 /4.
Now the tangent of the difference between these two angles can again

be computed
™
tan{48 — =) =

In other terms,

tandf—1 55 1
1+tands 28 7 239

1
43 — T arctan —,

4

239

or, solved for 7 /4, we obtain the final result

T 1 1
1 = 4 arctan - — arctan ——

5

239°

In contrast to Gregory’s formula there are two series to be computed
here, but this drawback is more than compensated for by the fact that
these series converge much more rapidly, especially the second one.
Following Machin’s idea many more similar formulas expressing 7 as
a sum of arctangents have been developed, among them one from

Gauss; see eqn. (3.6).

The Number
Cruncher’s Pain ...

After the discovery of differential calculus in the 17th century, new and
better methods were devised for the computation of w. These methods used the
series expansions of the arcsine and arctangent. The most convenient one for
calculation with paper and pencil was provided by John Machin (1680-1752).
Table 3.17 lists the progress made along these lines.'> Computations typically
took several months. Of course, some mistakes in such immense work were
unavoidable. So when Vega computed his 140 digits in 1794, he discovered an
error inthe 113% place of Delaney’s result. The 200 digits of Strassnitzky and
Dase also were not in agreement with Rutherford’s. Clausen then showed that
the error was in Rutherford’s calculation. Also Shanks’ result was wrong from
digit 527 on. Of all these, Strassnitzky deserves special mention. The actual
calculations were carried outby Johann Martin Zacharias Dase (1824-1861),
who was a calculating prodigy. His extraordinary calculating powers were

20ur exposition here is based in part on the book A History of Pi by Petr Beckmann, Second Edition, The Golem Press, Boulder,

1971.
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verified by renowned mathematicians. He multiplied two 8-digit numbers in
54 seconds, two 20-digit numbers in 6 minutes, and two 100-digit numbers
in under 9 hours, all of it in his head! There are at least two abilities that
such prodigies must have: rapid execution of arithmetical operations, and
something like a photographic memory to store the vast amount of information.
On the other hand it seems that extraordinary intelligence is not necessary;
on the contrary, this would be counter-productive. Dase, for example, was no
exception. All who knew him agree, that except for calculating and numbers,
he was quite dull. At the age of 20 Strassnitzky taught him an arctangent
formula for 7 similar to Machin’s formula, and in two months time Dase
produced 200 correct digits. But that was not all. In three years he computed
natural logarithms of the first million integers, each to seven decimal places,
and continued to work on a table of hyperbolic functions. He was brought to
the attention of Gauss, and upon Gauss’ recommendation, he started to make
a listing of the factors of all numbers from 7,000,000 to 10,000,000, a work
sponsored by the Hamburg Academy of Sciences. However, Dase died in
1861, after finishing about half of them.

In 1885 F. Lindemann succeeded in proving a fundamental theorem on
transcendental numbers which also solved an age-old problem: w is a tran-
scendental number,"” which implies that squaring the circle is an impossible
task. Nonetheless, people continued to find ‘solutions’ to the circle squaring
problem, some more obscure than others. Here is just one example. In 1897,
the house of representatives of Indiana, USA, passed a bill “for an act intro-
ducing a new mathematical truth”, which defined two(!) values of 7, namely
3.2 and 4. Fortunately, the senate of Indiana postponed further consideration
of the law indefinitely.

In the 20t century it became more and more difficult to break the record in
the computation of # — until computers came on the scene. It was a relatively
simple task to program a computer to evaluate, for example, Machin’s formula
up to a thousand digits. Of course, as soon as it became possible, it was done.
Table 3.18 lists the records in this second phase.

The computations up until the seventies were all based on arctangent series
that had already been used by the pre-computer age pioneers. A complete
listing of the first 100,000 digits of m was published by Shanks and Wrench
in 1962." 1In the last section of the paper the authors speculate about the
possibility of computing a million digits, concluding that “One would really
want a computer 100 times as fast, 100 times as reliable, and with memory
10 times as large. No such machine now exists. [...] In 5 to 7 years such a
computer [...] will, no doubt become a reality. At that time a computation of
7 to 1,000,000 digits will not be difficult.” The authors were too optimistic; it
took 12 more years until Jean Guilloud and Martine Bouyer checked off that
millionth digit.

...and the Circle
Squarer’s Ease

Approaching 7 with
Technology

13A number x is called algebraic provided that it is the root of a polynomial equation with rational coefficients. A transcendental

number is one that is not algebraic.

D. Shanks and J. W. Wrench, Jr., Calculation of ™ to 100,000 Decimals, Mathematics of Computation 16, 77 (1962) 76-99.
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Year | Name Computer Digits Approximation of 7 by
1949 | Reitwiesner ENIAC 2,037 Computer
1954 | Nicholson et al. NORC 3,089 World records of the computation of
1238 | Felion Pregasus 10.000 7 in the computer age. The comput-
1958 Genuys. IBM704 10,000 ing times are mostly on the order of
1959 | Unpublished IBM704 16,167 5 to 30 hours, the shortest one be-
1973 | Guiloud, Bouyer | CDCI600 1000400 | (78 13 minutes (1945 andalong one
1983 | Kanadactal. | Hitachi §-810 16000000 | (400 hours) gave the 2002 record.
1985 | Gosper Symbolics 17,000,000
1986 | Bailey Cray2 29,300,000
1987 | Kanada SX2 134,000,000
1989 | Kanada, Tamura HITAC S-820/80 1,073,741,799
1994 | Borwein, Borwein,

and Kanada HITACS-3900/480 4,294 967 286
1999 | Takahashi, Kanada | HITACHI SR8000 206,158,430,000
1999 | Kanada et al HIT. SR8000/MPP | 1,241,100,000,000 Table 3.18

How Far Can We Go?

Another

Breakthrough: New
Algorithms

The simplicity of the method using, for example, the Gauss formula (3.6)
in connection with the arctan series (3.7) is a temptation for any ambitious
programmer. It provides an excellent exercise for a programming course.
We have tried it out and succeeded in computing the first 200,000 digits."
However, the undertaking turned out to be notquite as easy as initially assumed.
In the first run only the first 60,000 digits were correct. The mistake was due
to insufficient treatment of overflow errors.

The question arises, how many digits one can possibly hope to be able to
compute. The algorithms based on arctangent expansions have the property
that doubling the number of digits in the result requires a computation which
is four times as long. The 1973 computation of a million decimals took 23
hours. For example, to get from one million to 128 million digits, one must
double the number of digits seven times (128 = 27). On the same computer,
the time of 23 hours, quadrupled seven times, would have yielded a computing
time requirement of about 43 years ... Even though computers were becoming
faster and faster, it was clear that there would be an end to that development
sooner or later. Thus, a couple more millions of digits seemed possible, but
certainly not hundreds of millions of digits. So the record of a million decimals
stood for 10 years. But the grounds had already been prepared for yet another
escalation.

A major breakthrough occurred in 1976 when algorithms which yield a
quadratically convergent iteration procedure were discovered independently
by Brent and Salamin.'® This means that in each iteration step of these methods
the number of correct digits is doubled. More recently the Borwein brothers

>The program ran about 15 hours on a Macintosh IIfx.
'R. P. Brent, Fast multiple-precision evaluation of elementary functions, Journal Assoc. Comput. Mach. 23 (1976) 242-251.
E. Salamin, Computation of ™ using arithmetic-geometric mean, Math. Comp. 30, 135 (1976) 565-570.
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have worked out a family of even more efficient methods."” All the new
algorithms are more efficient than the good old arctangent series, however, only
because of another breakthrough in a different area — arithmetic. Addition
of two n-digit numbers costs about n operations (add all corresponding pairs
of digits and add up). However, the direct, naive multiplication of two n-digit
numbers would essentially have to be carried out in n? operations (multiply
each digit with all other digits and add up). Thus, when the number of digits
n is of the order of a million or more, the difference between addition and
multiplication is dramatic. Thus, the discovery, that the complexity of the
multiplication of numbers, is effectively not significantly larger than that of
the addition of numbers is almost unbelievable: a multiplication can be made
almost as fast as an addition."® Practical implementations make use of a
form of Fast Fourier Transformation techniques. The combination of the new
feedback methods for 7 and the fast multiplication algorithms for very long
numbers facilitated computations of 7 with millions of digits of precision."
The record at the end of the 20th century stood at about 206 billion digits. Two
different algorithms (Gauss-Legendre and Borwein’s 4-th order convergent
algorithm) running each about 40 to 50 hours provided coinciding results.
Then, in 2002, Yasumasa Kanada reported haviong calculated 1.24 trillion
digits. The prospects are good to get even one more trillion digits in the near
future. Of course, for practical computations almost all of these digits are
completely useless.

However, there are two new reasons for this excessive digit hunting. The Two Reasons to

first one is related to a longstanding conjecture which states that the digits in Compute 7
7 as well as the pairs of digits, the triplets of digits, and so on are uniformly
distributed. In mathematical terms, 7 is believed to be a normal number. By
extensive computer study, one may be able to find signs about the truth or
falsity of this conjecture. At least up to the digits computed so far, statistical
tests indicate that 7 is, in fact, normal.?’ Of course, this is far from a proof.
The other reason why programs for the calculation of 7 should be written is
that they can be used to effectively test the reliability of computer hardware.
It is claimed that some computer manufacturers indeed perform such tests.””
Even the smallest error at any operation in the calculation will invariably
produce wrong digits from some place on, and these errors are very obviously
detectable.

"See the book, J. M. Borwein, P. B. Borwein, Pi and the AGM — A Study in Analytic Number Theory, Wiley, New York, 1987.

"More precisely, the way the computing requirements grow as the number of digits in the factors of the multiplication is
increased is not much worse than the corresponding (linear) growth of computing time for the addition of long numbers. The
interested reader is referred to the survey in D. Knuth, The Art of Computer Programming, Volume Two, Seminumerical Algorithms,
Addison Wesley, Reading, 1981, pages 278-299.

"“For a description of techniques and algorithms see J. M. Borwein, P. B. Borwein, and D. H. Bailey: Ramanujan, modular
equations, and approximations to pi, or how to compute one billion digits of pi, Am. Math. Monthly 96 (1989) 201-219.

In the first 200 billion digits computed in 1999 by Takahashi and Kanada, the digit zero appeared 20,000,030,841 times, while
the digit one came up 19,999,914,711 times and so on.

n fact, in the 1962 paper by Shanks and Wrench, one instance of such hardware failure was reported, and an auxiliary run of
the program was made to correct for the error. Thus, at least in the time about 30 years ago, reliability of the arithmetic was an
important practical issue even for the ‘end user’.
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Is There a Message
in7m?

v2 and

Incommensurability

The advanced and more recent efforts to compute = may have inspired Carl
Sagan to a part of his novel Contact” where he presents speculation about
a hidden pattern or message God may have provided in the digits of 7. In
the story a super computer makes a discovery after countless hours of number
crunching: the sequence of digits of 7, located very far from the beginning,
interpreted bitwise and displayed as a rectangular picture, shows a well-known
figure — a circle. The novel concludes:

“In whatever galaxy you happen to find yourself, you take the circumfer-
ence of a circle, divide by its diameter, measure closely enough, and uncover a
miracle — another circle, drawn kilometers downstream of the decimal point.
There would be richer messages further in. It doesn’t matter what you look
like, or what you’re made of, or where you come from. As long as you live in
this universe, and have a modest talent for mathematics, sooner or later you’ll
find it. It’s already here. It’s inside everything. You don’t have to leave your
planet to find it. In the fabric of space and in the nature of matter, as in a
great work of art, there is, written in small, the artist’s signature. Standing
over humans, gods, and demons, [...] there is an intelligence that antedates
the universe.”

We now return to more worldly issues of numbers. Although limits are very
useful for numerical computation of irrational numbers such as 7, ¢ or square
roots, it is more satisfying from a theoretical point of view to have a more
direct definition of the numbers. This could be an implicit definition in the
form of a suitable equation that simultaneously prescribes an approximation
by a feedback process, namely, just by iterating the equation. Let us look at
this issue in the remainder of this section.

We recall the problem of the incommensurability of the side and the diag-
onal of a square: the ratio of the diagonal and side of a square is not equal to
the ratio of two integers.23 In other words, v/2 # p/q for any integer p and q.
No doubt the diagonal is real, but does that mean that \/5 exists as a number
in some sense? This was a great question; and though it sounds naive from
today’s point of view, it was not and still is not. Just ask yourself how you
would convince somebody (of the existence of such a number). Certainly you
could not expect much aid from the decimal expansion, which goes on and on
in a seemingly totally disorganized fashion: the first 100 digits in the decimal
expansion are

V2 = 1.41421 35623 73095 04880 16887
24209 69807 85696 71875 37694
80731 76679 73799 07324 78462
10703 88503 87534 32764 15727. ..

But there is a different way to expand V2. N amely, to represent it as a special
kind of limit, and then v/2 looks almost as ‘natural’ as an integer does. This

2Carl Sagan, Contact, Pocket Books, Simon & Schuster, New York, 1985.
» Compare chapter 2, page 124.
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and some of the other most beautiful and mysterious limits are related to
continued fraction expansions.

Let us begin with a seemingly strange way of writing rational numbers.
Here is an example:

57 1
— =34 ——.
1
17 24+ —
14 =
+5
Let us see how this representation is obtained step by step:
57 6 1 1
AR TR Sk -
2+§ 2+ﬂ1'
5 L+

In this way any rational number can be written as a continued fraction ex-
pansion. The point is that a rational number has a finite expansion (i.e., the
process terminates after some definite number of steps). In our example we
write for short

87
—=3+2,1,5].
= =3+(21,5]
The same algorithm applies to irrational numbers. However, in this case the
algorithm never stops. It produces an infinite continued fraction representa-
tion.

Let us look into a slightly more general situation which brings us back to
\/5 . We begin with the equation:

22422 —-1=0.

The positive root of this equationis £ = v/2—1 < 1. Note that z2+2z—1 = 0
can be rewritten as z2 + 2z = 1,orz(2+z) = 1, or

. 1
T 24z

Moreover, after replacing x by ﬁ; on the right side,

_ 1
.’13————1—-‘

2+

24+
and then, doing it again,

e 1
S
2+ ——1—
2+

24z

Continued Fractions

Continued Fraction
Expansion of V2
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etc. In other words, there will be an infinite repetition of 2’s in the continued
fraction expansion of v2-1.N aturally, this implies that /2 has the expansion

1
1
1
1

24...

=1+

2+
24
2+

This remarkable identity relates v/2 with the sequence of numbers
1+ [2,2,2,2,...], the digits of the continued fraction expansion of V2.
We write V2 =1+ [2,2,2,2, .. ] and mean that 1,2,2,2,... are placed into
the fractions as above. In other words, \/§ is the limit of the sequence 1,
1+[2] =15 1+[2,2] =14,1+[2,2,2] = 1.416..., and so on. Thus,
v/2 has a perfectly regular and periodic continued fraction expansion, while
in an expansion with respect to some base like 10 the expansion looks like a
big mess. It will never be periodic, because otherwise \/5 would be a rational
number.

The process which we discussed in detail for the equation 2242z =1 Continued Fraction Expansion
works the same in a slightly different case, of the Golden Mean

?=az+1

where a is an integer. After dividing by £ and substituting for x twice
we obtain

1 1
r=aq+—-—=a+ 1=a+"-—1——
x
a+; a+

a+—
T
and so on. Thus, the continued fraction expansion will be
z=a+[aaa,...]

Specifically, if a = 1, then the positive root of z2 — z — 1 = 0 is the
golden mean z = (1 + v/5)/2 and we obtain

14+5
r = 2

1
1

1+

=1+[,1,1,...]=1+
1+

Therefore the golden mean has the simplest possible continued frac-
tion expansion. All roots of quadratic equations with integer coefficients
have continued fraction expansions, which are eventually periodic, like
2+02,2,3,2,3,2,3,.. Jor2+[1,1,4,1,1,4,1, 1,4, .. .]. Rational
numbers are characterized by a finite continued fraction expansion.




160 3 Limits and Self-Similarity

Let us summarize what our main point is about irrational numbers so Characterization by
far. If we only had a limit representation such as the decimal expansion of Equations
V2, we would feel quite uncomfortable. Comfort comes from some other
characterization:

1. /2 has an elementary continued fraction expansion, 1 +[2,2,2,...].
2. /2 solves an equation, 2?2 —-2=0,

But we can do even better. Consider the function

N()= 5 <x+ %)

and its fixed points x = N (). Compute
1 2 z 1 =z 1 2
= =42 =2 22
o 2<x+az> 2+x’ 2z °

Thus, the fixed points of the function N (z) are just the square roots of two,
and we may replace 2 — 2 = 0 in our list above by

mzN(x)=%<x+§>.

There is an important reason for favoring this fixed point formulation over
x% — 2 = 0: we can use N(x) as the governing of the feedback process,

Tni1 = N(zn), n=0,1,2,... (3.8)

This iteration process will surely converge to the positive root of two, provided
we start with a positive initialnumber xy > 0. We have discussed this already
in chapter 1, page 27, and just give an example here, choosing xy = 100; sec

table 3.19.
Approximation of the Square n T Correct Digits
Root of 2 0 100.0000000000000000 0
Approximation of square root of 2 1 50.0100000000000000 0
using the iteration Tpn41 = (Tn + 2 25.0249960007998400 0
2/x,)/2. The initial guess is €y = 3 12.5524580467459030 0
100. Once the method is about the 4 6.3558946949311400 0
same magnitude as the true value 5 3.3352816092804338 0
1.4142135623730950 . . ., the iter- 6 1.9674655622311490 ]
ates converge very rapidly, and the 7 1.4920008896897231 2
number of correct digits doubles in 8 i ' 4162413320389438 3
each step. 9 | 14142150140500532 6
10 1.4142135623738401 13
Table 3.19 11 1.4142135623730950 all

We see that the iteration process converges to /2 very rapidly after some
initial iterations have brought the number x,, into a region close to the root.
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The number of correct leading digits roughly doubles in each step. Of course,
this is no coincidence, but, in fact, the predominantly used method for the
calculation of square roots, called Newton’s method. Let us summarize our
findings:

1. There is a well-defined approximation procedure for V2, the feedback pro-
cess

1 2
:L‘n_|_1=§ $n+;— , g >0
n

with a rapid convergence.
2. There is a corresponding fixed point equation

(.2
1’—2.% T

which characterizes the limit, V2.

The fixed-point equation should be seen in connection with symmetries,
e.g., a regular hexagon is rotationally symmetric by a rotation of 60°, and it
also has a reflectional symmetry. In other words, one has an object, applies
some operation (transformation) to it and obtains the same object. Our goal
will be to corner fractals in the same way as one does irrational numbers,
i.e., by an elementary limit process stemming from a fixed-point equation,
which characterizes the fractal by an invariance property.
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3.4 Fractals as Solutions of Equations

Let us return to fractals and find out how we can carry over the concepts we
have learned from dealing with the square root of 2. Summarizing the main
point about the Koch curve we have that the curve is a limit of a process, a
limit which has special properties, and which we can characterize in a similar
way as V2 is characterized by its beautiful continued fraction expansion. But
does the Koch curve really exist? Well, this question is very much of the
same nature as the question of the existence of irrational numbers. Recall
that in that case we take comfort from the fact that we believe in the validity
of some closely related and characterizing concept. For example, for V2
we argue that this is the number which solves the equation z? — 2 = 0 or
z = (x + 2/x)/2. Or for 2rr we argue that this is the number which gives
a length to the unit circle. Observe that here neither number is characterized
as a limit of a sequence, and this really helps us to accept these numbers!
The hypothesis that m might still not be known in mathematics if it did not
relate to a circle so beautifully is speculative. Nevertheless, would Euler have
discovered that 1 4 1/2% 4+ 1/3% + 1/42 + .- is some very special number
(m%/6) worth being investigated even if 7 was not somehow a reality?

In other words, we need some further reasons to accept the existence of
the Koch curve, as well as characterizations which relate it to different ideas
and concepts or principles. This is a major desire in mathematics. If an
object or result suddenly becomes interpretable from a new point of view,
mathematicians usually feel that they have made progress and are satisfied.

We may ask: is there an invariance property for the Koch curve? Can we Is There an Invariance
find a characterization which is similar to that of /22 One type of invari- Property for the Koch
ance transformation is apparent. The Koch curve has an obvious reflectional Curve?
symmetry. But this is not characterizing in the sense that it singles out the
Koch curve. Ideally, we would like to find a transformation or a set of trans-
formations which leave the Koch curve invariant. Such a transformation then
could be viewed as some kind of symmetry. Recall the discussion of the self-
similarity of the Koch curve at the end of section 3.2. Let us now be a little bit
more formal and precise. Figure 3.22 illustrates the similarity transformation
of the Koch curve. First, we reduce the Koch curve by a factor of 1/3. We
put it onto a copier with reduction features and produce four copies. Then we
paste the four identical copies as shown in the bottom part of figure 3.22 and
obtain a curve which looks like the original one. The Koch curve is a collage
of the four copies.

The Similarity Transformations The following table lists the details of the similarity transformations w;
of the Koch Curve to wy of the Koch curve as shown in figure 3.22. When we take into
account that

cos60° = cos(—60°) = 1,
sin60° = —sin(—60°) = ¥,
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Number | Scale | Rotation | Translation
k s 0 T T,
1 1/3 0° 0 0
2 1/3 60° 1/3 0
3 1/3 —60° | 1/2 | V3/6
4 1/3 0° 2/3 0

Table 3.20 : Similarity transformations of the Koch curve collage. The trans-
formations are carried out first by applying the scaling, then the rotation, and
finally the translation (see section 3.1).

Transformation z-Part y-Part
wy(z,y) %33 %y
wa(x,y) lp— Byl Bz + iy
wa(z,y) | dz+Ly+l| -Lrylys L
wa(z,y) lz+12 1y

Table 321 : Explicit formulas for the similarity transformations of the Koch
curve collage.

we obtain explicit formulas for the transformations as given in table

3.21.

Characterization by an This collage-like operation can be described by a single mathematical
Equation for the transformation. We let wy, . . . , wq be the four similarity transformations given
Self-Similarity by a reduction with factor 1/3 composed with a positioning (rotation and

translation) at piece k along the polygon as shown in figure 3.22 (bottom).
Then, if A is any image, let W(A) denote the collection (union) of all four
transformed copies

W(A) = w1 (A) Uws(A) Uws(A) Uwg(A). 39

This is a transformation of images, or more precisely, subsets of the plane.
Figure 3.23 shows the result of this transformation when applied to an arbitrary
image, for example, when A is the word ‘KOCH’. When comparing the results
in figure 3.22 and figure 3.23, we make a fundamental observation. In the case
where we apply the transformation W from eqn. (3.9) to the image of the Koch
curve, we obtain the Koch curve back again. That is, if we formally introduce
a symbol K for the Koch curve, we have the important identity

W(K) = K,

which is the desired invariance (or fixed-point) property. In other words, if we
pose the problem of finding a solution X to the equation W(X) = X, then
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The Koch Collage

The Koch curve is invariant under
the transformations wi to wq.

Figure 3.22

The KOCH Collage

The word ‘KOCH’ is not invariant
ek KOCH

KOCH

/“\
¥ o
S

S
KOCHY  KocH

Figure 3.23

the Koch curve K solves the problem. Moreover, this equation also shows the
self-similarity of K since

K =w (K)YUwe(K)Uws(K)Uws(K)

states that K is composed of four similar copies of itself. In other words, we
have characterized K by its self-similarity. If we further substitute for K the
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Limit Object Koch Curve

Starting with an arbitrary shape, a
rectangle, iteration of the Hutchin-
son operator produces a sequence of

images, which converge to the Koch
curve.

Figure 3.24

Only the Koch Curve
Is Invariant Under W

The Koch Curve
As a Limit Object

collection of the four copies on the right-hand side of the equation, then it
becomes clear that K is made of 16 similar copies of itself, and so on. We
will come back to this interpretation of self-similarity later in this section.

When we apply the same transformation W to the name KOCH (i.e., X
is the image ‘KOCH’), we do not get back the name KOCH at all. Rather, we
see some strange collage.

We are led to conjecture that maybe the only image which is left invariant
under the collage transformation W is the Koch curve. Indeed, that is a theorem
which has far-reaching consequences which will be discussed in chapter 5. A
collage transformation like W above is called a Hutchinson operator, after J.
Hutchinson, who was the first to discuss its properties.**

Having characterized the Koch curve as a fixed point of the Hutchinson
operator, we now conclude the analogy to the computation of v/2 (see eqn.
(3.8)). It remains to show that mere iteration of the operator W applied to a
starting configuration Ag yields a sequence

Anir = W(An), n=0,1,2,...,

which converges to the limit object, the Koch curve. This is indeed the case,
and figure 3.24 visualizes the limit process, providing pictorial evidence that
there is such a self-similar object. Let us summarize.

1. There is a well-defined approximation procedure for the Koch curve, the
feedback process

An+1 = W(An), n=2012...
where Aq can be any initial image and W denotes the Hutchinson operator

W (A) = wy(A) Uwa(A) Uws(A) Uws(A)

2] Hutchinson, Fractals and self-similarity, Indiana University Math. J. 30 (1981) 713-747.
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for the Koch curve.
2. There is a corresponding fixed-point equation

A=W(A)
which uniquely characterizes the limit, the Koch curve.

How can we make sure that what we see — W applied to the Koch curve
yields the Koch curve again — is actually true? Can we really trust an image,
or better, a graphic experiment? The answer is that we should take it as some
supporting evidence, but not more than that. After all, it might be that in
some invisibly small detail there is a difference between W(K) and K itself.
In other words, we must go on and convince ourselves that this remarkable
self-similarity property is actually a fact and notjust an experimental artefact.
This will be our next goal. However, we will first discuss this property in two
simpler examples, the Cantor set and the Sierpinski gasket.”

The Cantor Set Construction

The geometric feedback construc- 0 13

tion of the Cantor set.

Figure 3.25

2/3

In chapter 2 the Cantor set was introduced as a limit in a geometric feedback
process (begin with the unit interval, remove the open interval of length 1/3
centered at 1/2, then remove the middle thirds of the remaining intervals, and
so on). Moreover, it has been described as the set of numbers between 0 and 1,
for which there exists a triadic expansion that does not contain the digit 1. This
last characterization allows us to verify that the Cantor set is the fixed point
of the appropriate Hutchinson operator W given by the two transformations

wl(x) = ’

wy(z) = - +

wWlRWIR
[OVRN )

Thus, for a given set A, W(A) = wi{A) Uws(A). Figure 3.26 shows how
the transformations act when applied to the unit interval.
Our claim is that the Cantor set is a solution to the equation

W(X) =X

i.e., the Cantor set C is invariant under W, and W(C) = C.

Equation for the
Cantor Set

*>The mathematical discussion must be postponed to chapter 5 where we will look at the convergence of images and the char-

acterization of fractals by Hutchinson operators in detail.
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0 1
1\', W
0 1/3 213 1

Cantor himself gave a characterization of the set named after him in
terms of numbers expanded with respect to base 3, triadic numbers.
Recall that any number z, 0 < x < 1, can be expanded in

t=ay 3 ' 4ay-3%4a3-3 3 +ag-374+...,

where the digits a; are from {0, 1, 2}. Then x is written in the form
x = 0.a1a2a3 . . ., i.e., we take the coefficients a1, ag, as, . . . as triadic
digits. Then the Cantor set is determined by

C={z|z=0a0aas...,a; € {0,2}},

i.e., by all numbers which admit a triadic expansion that misses the
triadic digit 1. Using this characterization we can, in fact, convince our-
selves that the invariance property, which characterizes self-similarity,
is true: first, we have to understand how wi and wq act on triadic
numbers, but that is really easy to explain: if x = 0.ayaz2a3...,
then wi(x) = 0.0a1a203..., and w2(z) = 0.2aias... Thus, if
ar € {0,2}, then the triadic digits of w;(z) and wy(zx) will also
have that property, ie., wk(C), k = 1,2, is contained in C again.
But can we get all points of C in this way? Indeed, if y € C,
ie,y = 0.cia9az... and a; € {0,2}, then there is  in C and
exactly one of the two transformations wy, £ = 1,2, will have the
property wi(x) = y. Simply take £ = 0.a2as... Thenif a; = 0,
choose w1; otherwise choose wa. This establishes that W(C) = C
holds.

The Cantor Set
Transformations

The similarity transformations wy
and w2 for the Cantor set.

Figure 3.26

The Invariance of C under W

The Invariance The invariance property explains self-similarity. We start with
Property and c

o ey e = un CYUws(C
Self-Similarity () 2(C)

i.e., C is a collage of two similar copies of itself — scaled down by a factor

of 1/3. Then we obtain

C = wi(w1(C) Uwz(C)) Uwa(w (C) Uwy(C)),
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The Sierpinski Gasket
Revisited

(0,1)
Construction of the Sierpinski gas-
ket as a limit. Stages 0 to 3 are
shown.
(0,0) (1,0)

Figure 3.27

which leads to
C = w1 (w1 (C)) Uwy(w2(C)) Uwy(wr(C)) Uws(we(C)),

i.e., C is a collage of four similar copies of itself — scaled down by a factor
of 1/9, and so on. That is to say, we can identify smaller and smaller pieces in
C which are just scaled down versions of C.

Let us discuss in a similar fashion the Sierpinski gasket. Again we begin
by a limit characterization which is actually the one given by Sierpinski in
1916.

Start with a triangle. It can be any kind, but for reasons which will soon
become apparent, we will let 7 be a right triangle with two of its sides having
length one. Now pick the midpoints of the sides. These define a center triangle,
which we remove. We are left with three similar triangles, and for each we
pick the midpoints of their sides, take away the center triangles, and are left
with nine smaller triangles, and so on (see figure 3.27).

Also, the Sierpinski gasket is self-similar. To discuss this feature, we think
of it in a plane, so that the vertices are at coordinates (0,0), (1,0), and (0,1).
Then we introduce three similarity transformations w,, wg, and w3. Each of
these transformations can be interpreted as a scaling by a factor of 1/2, together

The Sierpinski Gasket
as a Limit
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The Invariance of the
Sierpinski Gasket

with a positioning such that
wy (0, 0) (0, 0)

w(1,0) = (1,0)
w3(0,1) = (0,1).

]

We claim that if S denotes the Sierpinski gasket, then

S = w1 (S) Uwz(9) Uws(S). (3.10)
In other words, if we introduce the Hutchinson operator

W(A) = w(A) Uwy(A) Uws(A)
where A is any image in the plane, then

W(s) =S,

i.e., the Sierpinski gasket is invariant under W, or it solves the equation
wX) = X.

This means that the Sierpinski gasket can be broken down into 3, or 9, or 27
(abstractly 3F) triangles which are scaled down versions of the entire Sierpinski
gasket S by a factor of 1/2, or (1/2)2, or (1/2)® (abstractly (1/2)¥). In other
words, once we have given an argument for eqn. (3.10), we have completely

understood the self-similarity of the Sierpinski gasket.

Though it seems to be obvious from the geometric construction that S The Binary Characterization of

should satisfy S = w; () Uws(8) Uws(S). we prefer to give a solid
argument. The geometric removal process in figure 3.27 is equivalent
to looking at certain points in the plane and taking away a certain subset
in a systematic fashion. If (, ) is a point in the plane with nonnegative
coordinatesand x + y < 1,then (z,%) is in the triangle with vertices
(0,0), (1,0), (0,1). Given any point (x,y) from this triangle, it can be
tested for membership in the Sierpinski gasket in the following way.
Write down a binary expansion of both coordinates

0.a1a2a3..., where ai € {0,1},
0.biboby ..., where by € {0,1}.

z
4

The point (x,y) belongs to the Sierpinski gasket if and only if corre-
sponding digits ax and by, are never both equal to 1. In other words,
ar = 1 must imply by = 0 and by = 1 must imply ax = 0, and
this holds forall k = 1,2,3... We will derive this characterization in
chapter 5, section 5.4.

Thus, a point 2z is disregarded if a binary expansion of its coor-
dinates z andy have a pair of coefficients ar, = 1, by = 1, re-
spectively. At first there seems to be a problem with some points like
(z,y) = (0.5, 0.5) for example. This is clearly a point in the Sierpinski
gasket, although it seems obvious from the equality of x and y that one
can always find corresponding binary digits ax and by, of  and ¢ which
are both equal to 1. But note that 0.5 has two binary representations:

the Sierpinski Gasket and the
Invariance of S under W
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Transformation z-Part y-Part
wl(m,y} U.[}ﬂ.lagaa T U.[}blbgb;; i
’tUz(.fC, y) U.1a1a2a3 PR U.Ublbzb;j i
ws(x,y) 0.0ajaczasz ... | 0.1bybobs. ..
Table 3.28 :  Explicit formulas in binary expansions for the similarity trans-

formations of the Sierpinski gasket. The point z = (x,¥) is defined by

r = 0.a1a2a3 ...and Yy = 0.b1b2b3 .

one is 0.5 = 0.1000 ... and the other one is 0.5 = 0.0111 ... Choos-
ing the firstfor £ and the second for i we see that the point belongs to S
also according to the binary characterization of the Sierpinski gasket.

Using the binary characterization of § we can now argue that
Hutchinson’s formula § = w1 (S) U w,(S) U w3(S) is correct. All
we have to do is understand how wy, acts upon a point (z,y) in S. The
details are a bit tedious, but they are of the same nature as with the
ternary characterization of the Cantor set from chapter 2. Table 3.28
lists the three points to which (z,y) is transformed under w;, ws and
ws. Note that the points of the Sierpinski gasket can be grouped into
three sets depending on the first binary digits of £ and y. The first set
collects points with a1 = b1 = 0, the second points with a; = 1 and
by = 0, and in the third set we find all points with a; = 0 and by = 1.
There are just three points which are contained in two of the above
categories simultaneously, namely, (0.5, 0), (0, 0.5), and (0.5, 0.5).
But this does not pose any problem for the following conclusion. Using
the above table it becomes clear that w1 (S) is equal to the first subset,
wz(S) is the second and ws3(S) is the third. Thus, indeed, we have

that

W(S) = wl(S) U’IUQ(S) U’wg(S) =

S.

In the discussion of the Koch curve, Cantor set, and Sierpinski gasket we
have learned thateach of these basic fractals can be obtained by alimit process.
But simultaneously there is a fixed-point characterization by a Hutchinson
operator which is a composition of appropriate similarity transformations.
This is a very far reaching insight. For one thing, it explains the meaning of
self-similarity. But in fact, the Hutchinson operator gives us much more. It
also provides us an alternative way to talk about the existence of the Koch
curve, or Cantor set, or Sierpinski gasket.

Itcanbe shownthateach ofthe Hutchinson operators which we introduced
earlier identifies a unique objectin aplane (for the Koch curve and Sierpinski
gasket) and on a line (for the Cantor set), which it leaves fixed. Or in other
words, if W is the appropriate Hutchinson operator, then the solution to the
equation W(X) = X will automatically be either the Koch curve, the Cantor
set, or the Sierpinski gasket. Thus we have a characteristic equation for each
ofthesefractals. Naturally, theseequations arenotunique. Also,for v2there

A Unique
Identification of
Objects
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are several possible characterizations by equations, and the same is true here.
This is a topic with very interesting variations, which we will pick up again
in chapter 7. There are also characterizations of traditional geometric objects
in terms of similarity invariance properties. Take, for example, a square or
simple triangle. The breakdown in figure 3.29 shows how these objects can
be split up in a self-similar way. Thus, we can see fractals like the Sierpinski
gasket in the same family as traditional geometrical objects. In fact, they solve
the same kind of equations. Or in other words, from this point of view, fractals
can be seen as extensions of traditional geometry, very much like irrational
numbers can be seen as extensions of rational numbers by solving appropriate
equations.

Tilings of Square and Triangle

Breakdown of square into four
scaled down squares, and of triangle

into two scaled down and similar tri-
angles.

Figure 3.29

Using the Hutchinson operator W we can complete the analogy to the  Self-Similarity in the Series of
geometric series. Let us start out with a triangle T of the coast of the Hutchinson Operators
Koch island, see figure 3.30. We now apply the Hutchinson operator

to T and add the result. Correspondingly, in a geometric series we

would start with the number 1, and the first step would consist of a

multiplication of the number with a factor g with succeeding addition.

Here, after the first application, we have

TUW(T) =T Uw (T)UwaT)Vws(T) Uwa(T).

Figure 3.30 :

The starting configuration (left) and the first two steps in the

construction of a part of the Koch island in analogy to the geometric series.
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Thus, we have added four triangles. In the next step, we again apply
the Hutchinson operator W to our current configuration T'UW (T') and
add the result:

TUW(T)UW2(T).

Here W2(T')denotes the repeated application of W, i.e., W(W(T)),
and this is the collection of 16 triangles given by

w1 (w1 (T)), wi(w2(T)),. .., wa(ws(T)), wa(wa(T)).
The next step yields
TUW(T)UW*T)uW3(T).

In analogy to the geometric series we may even write down the limit
object of this construction as

U wa)
k=0

where we imply the convention WO(T") = T..




Chapter 4

Length, Area and Dimension:
Measuring Complexity and Scaling
Properties

Nature exhibits not simply a higher degree but an altogether different level of
complexity. The number of distinct scales of length of natural patterns is for
all practical purposes infinite.

Benoit B. Mandelbrot'

Geometry has always had two sides, and both together have played very
important roles. There has been the analysis of patterns and forms on the
one hand; and on the other, the measurement of patterns and forms. The
incommensurability of the diagonal of a square was initially a problem of
measuring length but soon moved to the very theoretical level of introducing
irrational numbers. Attempts to compute the length of the circumference of
the circle led to the discovery of the mysterious number 7. Measuring the area
enclosed between curves has, to a great extent, inspired the development of
calculus.

Today measuring length, area and volume appears to be no problem. If at
all,itisatechnical one. In principle, we usually think these problems have long
since been solved. We are used to thinking that what we see can be measured
if we really want to do so. Or we look up an appropriate table. Mandelbrot
tells the story that the length of the border between Spain and Portugal has
two very different measurements: an encyclopedia in Spain claims 616 miles,
while a Portuguese encyclopedia quotes 758 miles. Who is right? If you look
up the length of the coast of Britain in various sources, again you will find

"Benoit B. Mandelbrot, The Fractal Geometry of Nature, Freeman, 1982.
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that the results vary between 4500 and 5000 miles.” What is happening here?
There seems to be a problem. That is the theme of Mandelbrot’s 1967 article’
How long is the coast of Britain? For a moment we are led to believe that
somebody has done a sloppy job. We have all seen those people surveying in
the field with their high-precision optical gear. Is it possible that they made
a mistake? And who made it; who is right and who is wrong? How do we
find out?* And today with satellite surveying and laser precision, do we have
more reliable results? The answer is no. And the fact is, we never will.

We will demonstrate that for all practical purposes, typical coastlines do
not have a meaningful length! This statement seems to be ridiculous or at least
counter-intuitive. An object like an island with some definitive area should
also have some definitive length to its boundary.

We know that if we measure the circumference of a circular object, we will
not obtain 7d, d the diameter, but rather something close to it. We know we are
inaccurate, but we don’t worry because if we need a more accurate result, we
just increase the level of precision in our measurement. Measurement requires
units such as miles, yards, inches, etc.: all idealized straight-line segments. If
we have a curved object such as a circle, then there is no doubt that the object
has a definitive length and that it can be measured as accurately as necessary.
Somehow our experience is that objects which fit on a piece of paper have
finite length. Butthis is amisleading intuition. We usually measure the length
only of objects, for which the result in fact does make sense and is of some
practical value. But coastlines (and fractals) are not the only exceptions.

The Encyclopedia Americana, New York, 1958, states “Britain has coasts totaling 4650 miles = 7440 km”. Collier's Ency-
clopedia, London, 1986 states “The total mileage of the coastline is slightly under 5000 miles = 8000 km.”

’B. B. Mandelbrot, How long is the coast of Britain? Statistical self-similarity and fractional dimension, Science 155 (1967)
636-638.

*Here are several methods of getting an answer: (1) Ask all the people in Britain and take the average of their answers. (2)
Check encyclopedias. (3) Take a very detailed map of Britain and measure the coast using compasses. (4) Take a very detailed
map of Britain and a thin thread, fit it on the coast, and then measure the length of the thread. (5) Walk the coast of Britain.
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4.1 Finite and Infinite Length of Spirals

One possible class of objects which defies length measurement are spirals, it
seems. Spirals fit on a piece of paper, and obviously do have infinite length.
Well, do spirals really have infinite length? This is a very delicate question.
Some have, and others don’t.

Spirals have fascinated mathematicians throughout the ages. Archimedes
(287-212 B.C.) wrote a treatise on spirals, and one of them is even named
after him. The Archimedean spiral is a good model for the grooves on a
record, or the windings of a rolled carpet. The characteristic feature of an
Archimedean spiral is that the distance between its windings is constant. The
mathematical model for such a spiral is very easy to obtain once we introduce
polar coordinates: a point P in the plane is described by a pair (r, ¢), where
7 is the distance to the origin of a coordinate system (the radius) and ¢ is the
angle of the radius to the positive z-axis, measured inradians,i.e.,0 < ¢ < 27
(see figure 4.1).

Polar Coordinates

The polar coordinates of the point P
y with Cartesian coordinates {x, y) are
(r, ), where r = \/x? + y? is the
distance to the origin and ¢ is the an-
gle with the positive z-axis. Thus,
¢ x=rcosd,and y = rsin¢.

Figure4.1

In this frame of reference, an Archimedean spiral (seen from its center)
can be modelled by the equation

r(¢) = q¢

where we now allow ¢ to be any nonnegative number, i.e., ¢ = 27 is one
turn, ¢ = 4w corresponds to two turns, and so on. When drawing this spiral
we start in the center. As we make one complete turn, the angle ¢ increases
by 27 and r increases by 2mq, the constant distance between two successive
windings.

If we replace r(#) by the natural logarithm log r(¢), we obtain a formula
for the logarithmic spiral: logr(¢) = g¢, or,equivalently,

(@) = 9.

When g > 0and ¢ grows beyond all bounds, the spiral goes to infinity. When
q = 0, we obtain a circle. And when ¢ < 0, we obtain a spiral which winds into
the center of the coordinate system as ¢ goes to infinity. This spiral is related
to geometric sequences and has a remarkable property which is related to
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Archimedean Spiral

Stepping along the Archimedean
spiral in steps of a constant angle
« yields an arithmetic sequence of
radii r1,72,...

Figure 4.2

Logarithmic Spiral

Stepping along the logarithmic spi-
ral in steps of a constant angle o
yields a geometric sequence of radii
T1,72y...

Figure 4.3

fractals. Itis self-similarin a way which has equally inspired mathematicians,

scientists and artists.

The great Swiss mathematician Jacob Bernoulli (1654—-1705) devoted a
treatise, entitled Spira Mirabilis (Wonderful Spiral), to the logarithmic spiral.
He was so impressed by its self-similarity that he chose the inscription Eadem
Mutata Resurgo (In spite of changes — resurrection of the same) for his
tombstone in the Cathedral of Basel.

Spirals and the Arithmetic and
Geometric Means

An Archimedean spiral is related to arithmetic sequences in the fol-
lowing way: we choose an arbitrary angle, say «, and points on the
spiral, whose radii 1, 79,73,... have angle & to each other (see fig-
ure 4.2). Then the numbers r; constitute an arithmetic sequence,
i.e., the differences between consecutive numbers are the same. Thus,
r3—7T3 = ro—7y,and soon. Indeed, if r; = a¢y, thenrs = a(¢1+a),
and r3 = a{¢; + 2a). In other words, r2 = (r1 + 73)/2. That means
any radius is the arithmetic mean of its two neighboring radii.
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If we replace the arithmetic mean (r; + r3)/2 by the geometric
mean ,/7173,we obtain the other classical spiral, the famous logarith-
mic spiral (see figure 4.3). Let us see why. Squaring the equation for
the geometric mean gives r% = 7yr3, Of, equivalently,
L T2
rg 73

Taking logarithms this identity reads
logrz — logry = logry — logry.

That means, the logarithms of successive radii form an arithmetic se-
quence. Thus, we obtain logr = g¢, the formula for the logarithmic

spiral.

The radii r; of the logarithmic spiral form a geometric sequence.

We have
Ty _ T2 T3

T2 T3 T4

T4
Ts

Thus, there is a constant, say a, such that for any index n

Tn
=a
Tn41
and
_ ™ _ Tp-1 _ N
=T T T
Self-Similarity of the What is the amazing property which Bernoulli admired so much? He
Logarithmic Spiral observed that a scaling of the spiral with respect to its center has the same

The Construction of
Polygonal Spirals

effect as simply rotating the spiral by some angle. Indeed, if we rotate the
logarithmic spiral r(¢) = €?% by an angle of 1 clockwise, then the new spiral
will be

r(p) = e+,

Since

(oY) . ¥ .eqtb,

rotating by 4 is the same as scaling by s = e4¥.

Now what is the length of the spiral? Let us look at an example of a spiral
where the construction process makes calculation easy. It is, by the way, just
another example of a geometric feedback system.

We generate an infinite polygon. First, choose a decreasing sequence
a1, as,as, ... of positive numbers. Now a; is the length of our initial piece.
We construct the polygon in the following way: draw a; vertically frombottom
to top. At the end make a right turn and draw a; again (fromlefttoright). At
the end of that line start to draw a2 (first,continue in the same direction, from
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Spiral or Not Spiral?

A ‘spiral’ by Nicholas Wade. Repro-
duced with kind permission by the
artist. From: Nicholas Wade, The
Art and Science of Visual Illusions,
Routledge & Kegan Paul, London,
1982.

Figure 4.4

left to right). At the end make another right turn and draw a, again (now from
top to bottom). At the end of that line take «3. Continue on using the same
principles. Figure 4.5 shows the first steps of this construction.

How long is this polygonal spiral? Well, each segment a; appears twice
in the construction, and thus the length is twice the sum ofall ay.1i.e., 2(a; +
ag +az + - ). Let us now choose particular values of a. Let ¢ be apositive
number. If we take a; = ¢*~!, we obtain as total length 23,7 ; ¢*, which
is a geometric series. Provided that ¢ < 1, the limiting length’ is equal to
2/(1 — ¢). Thus, this polygonal spiral has finite length.

If we take, however, ar, = 1/k, k = 1,2, ..., we obtain a series which is
known not to have a limit.® In other words, the associated spiral is infinitely
long, although it fits onto a finite area! Figure 4.6 shows both cases. Can you
see which of the two spirals is finite and which is infinite?

The above polygonal spiral constructions can easily be used to support a
smooth spiral construction. Observe that the polygons are composed of right
angles with equal sides a. Each of them encompasses a segment of a circle
— in fact, exactly a quarter of a circle withradius ay. Putting together these
segments appropriately produces a smooth spiral. Figure 4.7 shows the first

An Infinitely Long
Spiral In a Finite Area

SRecall that the limit of the geometric series 1 + ¢ + ¢* + ¢ + ¢* + - - -is 1/(1 — q).when [¢] < 1.

The sum 1 + 1/2 + 1/3 + 1/4 + - is infinite (see the footnote on page 141).
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Polygonal Spiral
4 o
} The first construction steps of a
polygonal spiral.
%
s
a a, |
a
3
4
ﬂ4 aa
Figure 4.5
RS Infinite and Finite Polygonal

Spirals

The spiral on the left is the one for
ar = 1/k (ie., the length is infi-
nite). The spiral on the right is the
one for ax = ¢*~! with q = 0.95,
a value slightly below 1 (i.e.,ithas a
finite length).

L1

Figure 4.6

two steps of this construction.

What is the length of these smooth spirals? Observe that the radii of the
circle segments are of length ax, while the circle segments then are of length
sk = 2may /4 = (w/2)ak. In other words, we have the total length

o0 (o o]
D osk=g2 ak
k=1 k=1

R

which s finite for ax, = ¢*~! (where ¢ < 1)butinfinite for ay, = 1/k. Figure
4.8 shows both spirals.

Again, it is amazing how little our visual intuition helps us to ‘see’ finite
or infinite length. In other words, the fact that a curve fits on a piece of paper
does not tell us whether its length is finite or not. Fractals add a new dimension
to that problem.
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Smooth Polygonal Spiral

Figure 4.7

Infinite and Finite Smooth
Spirals

The smooth spiral construction from
figure 4.7 is carried out for the
polygonal spirals from figure 4.6:
ar = 1/k (left) and ax, = g*~ ! with

= 0.95 (right). Again the left spi-
ral has infinite length while the right
hand one has a finite length.

Figure 4.8

The Golden Spiral

If we take for our polygonal spiral construction ax = 1/gk‘1, k =

1,2,..., where g = (1 + v/5)/2 is the golden mean, we obtain the
famous golden spiral. For the length of this spiral we compute
1-2 g-1
g
Here we have used that g satisfiesg? —g—1=0(i.e, g—1=1/g).
The golden spiral can also be obtained in another beautiful con-
struction: start with a rectangle with sides a; and a; + a2, where
a1 =1 anday = 1/g(i.e., a1/a; = g). The rectangle breaks down
into a square with sides a; and a smaller rectangle with sides a; and
a1. This smaller rectangle again breaks down into a square with sides
a2 and an even smaller rectangle with sides a3 and az, and so on (see
figure 4.9). Note that
1
az _ g
a3 a; — ap

@ -
—

]
BT

Il

N~
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Figure 4.9 : The golden spiral.

In the same way we obtain thatag/akx+1 = g. With that we compute
ak = ag_1/g = -~ = a1/g*"t = 1/g*¥71. The length of the

inscribed smooth spiral is equal to %gz =

T3 +V5).
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4.2 Measuring Fractal Curves and Power Laws

The computation of the length of the various spirals — finite or infinite — is
based on the corresponding mathematical formulas. The result on the infinite
length of the Koch curve and the coast of the Koch island in chapter 2 is
derived from the precise construction process of these fractals. Both of these
methods for length computation of course fail when we consider fractals in
nature such as real coastlines. There is no formula for the coastline of Great
Britain, and also there is no defined construction process. The shape of the
island is the result of countless years of tectonic activities of the earth on the
one hand and the never-stopping erosion and sedimentation processes on the
other hand. The only way to get a handle on the length of the coastline is to
measure. In practice we measure the coast on a geographical map of Britain
rather than the real coast. We take compasses set at a certain distance. For
example, if the scale of the map is 1:1,000,000 and the compass width is 5 cm,
then the corresponding true distance is 5,000,000 cm or 50 km (approximately
30 miles). Now we carefully walk the compasses along the coast counting
the number of steps. Figure 4.10 shows a polygonal representation of the
coast of Britain. The vertices of the polygons are assumed to be on the coast.
The straight-line segments have constant length and represent the setting of
the compasses. We have carried out this measurement using four different
compass settings.’

Compass Setting | Length

500 km 2600 km

100 km 3800 km

54 km 5770 km

17 km 8640 km
This elaborate experiment reveals a surprise. The smaller the setting of Smaller Scales Give
the compasses, the more detailed the polygon and — the surprising result — Longer Results

the longer the resulting measurement will be. In particular, up in Scotland
the coast has a very large number of bays of many different scales. With one
compass setting many of the smaller bays are still not accounted for, while in
the next smaller one they are, while still smaller bays are still ignored at that
setting, and so on.

Let us compare this phenomenon with an experimental measurement of the Measuring a Circle
perimeter of a circle. We use a circle of diameter 1000 km, so that the perimeter
is of the same order of magnitude as the measured length of the coast of Britain.
We do not have to go through the process of actually walking compasses around
the circle. Rather, we make use of the classical approach of Archimedes who
had worked out a procedure to calculate what these measurements would

"In: H.-O. Peitgen, H. Jiirgens, D. Saupe, C. Zahlten, Fractals — An Animated Discussion, Video film. Freeman, New York,
1990. Also appeared in German as Fraktale in Filmen und Gesprdchen, Spektrum der Wissenschaften Videothek, Heidelberg,
1990.
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compass 100 km

Approximations of Britain

Polygonal approximation of the
coast of Britain.

compass 50 km

Figure 4.10
Number of Sides | Compass Setting | Length Measuring the Circle
6 500.00 km 3000 km Length of a circle of diameter
12 258.82 km 3106 km 1000 km approximated using in-
24 130.53 km 3133 km scribed regular polygons. The en-
48 65.40 km 3139 km tries are computed from the formula

96 3272 km 3141 km of Archimedes; see page 147.

192 16.36 km 3141 km T

able4.11

be (see page 147 and table 4.11). In order to compare the results we enter
the measurements in a graph. However, because the size of our compass
setting varies over a broad spectrum from a few kilometers to several hundred,
a length-versus-setting diagram is difficult to draw. In such a situation one
usually passes to a log/log diagram. On the horizontal axis the logarithm of the
inverse compass setting (1/setting) is marked. This quantity can be interpreted
as the precision of the measurement. The smaller the compass setting is, the
more precise is the measurement. The vertical axis is for the logarithms of
the length. We take logarithms with respect to base 10, but that doesn’t really
matter. Moreover, we like to interpret 1/s as a measure of precision, i.e., when
s is small then the precision 1/s is large. Our log/log plots will always show
how the total length (log(u)) changes with an increase in precision (log(1/s)).
Figure 4.12 shows the results for the coastline of Britain and the circle.
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Log/Log Diagram for Coast of
Britain and Circle

Log/log diagram for measurements
of coast of Britain and circle of di-
ameter 1000 km (table 4.11). u =
length inkm, s = setting of com-
passes in km. Rather than look-
ing at log(s), we prefer to consider
log(1/s) as a measure of the preci-

log(u)
coast

sion of the length.

log(1/s5) -2I_7

Figure 4.12

We make a remarkable observation. Our points in the diagram roughly fall
on straight lines. Itis a topic of mathematical statistics how to define a line that
approximates the points in such a diagram. Obviously, we cannot expect that
the points fall exactly on a line, because of the nature of the measurements.
However, a measure of the deviation of the line from the collection of points
can be minimized. This leads to the widely used method of least squares. In
our case we obtain a horizontal line for the circle and a line with some slope
d = 0.3 for the coast of Britain.

Assume that we take these data and use them to make a forecast of the
changes when passing to more precise measurements, i.e., when we use a
smaller compass setting s. For this purpose we would simply extrapolate the
lines to the right. This would yield about the same result for the circle since
the line is approximately horizontal. In other words, the circle has a finite
length. However, the measured length of the coast would increase at smaller
scales of measurement.

Let us denote by b the intercept of the fitting line with the vertical axis.
Thus, b corresponds to the logarithm of the measured length at scale s = 1
corresponding to 1 km. The relationship between the length « and the scale
or size s covered by the compasses can be expressed® by

1
logu =d - log~ +b. “.1
s
Equation 4.1 expresses how the length changes when the setting of the com-
passes is changed, assuming that in a log/log plot the measurements fall on a
straight line. In that case the two constants, d and b, characterize the growth

Fitting a Straight Line
to a Series of Points

8Recall that a straight line in a 2-y diagram can be writtenas y = dx + b, where b is the y-intercept and d is the slope of the

line(i.e., d = (y2 ~ y1)/(z2 — x1)), for any pair of points (z1,¥1) and {Z2,¥y2) on the line.




4.2  Measuring Fractal Curves and Power Laws 185

law. The slope d of the fitting line is the key to the fractal dimension of the
underlying object. We will discuss this in the next section.

We would not like to take it for granted that the reader is familiar with Power Laws
log/log diagrams. To explain the main idea, let us take some data from

an experiment in physics. To investigate the laws governing free fall

we may drop an object from different levels of a tall tower or building (of

course with proper precautions taken). With a stopwatch we measure

the time necessary for the object to reach the bottom. With height

differences between levels being 4 meters, we get the following table

of data (table 4.13).

Height h (in m) | Drop Time ¢ (in sec) | logh logt
4 0.89 0.60 | —0.051
8 1.26 0.90 0.100
12 1.55 1.08 0.190
16 1.79 1.20 0.253
20 2.00 1.30 0.301
24 2.19 1.38 0.340
28 2.37 1.45 0.375
32 253 1.51 0.403

Table 4.13 : Drop time versus height of free fall. The last two columns list
the logarithms (base 10) for the data. The original and the logarithmic data is
plotted in figure 4.14.

Figure 4.14 shows the data graphically. Clearly, the plotted points
are not on a straight line (top curve). Thus, the relation between height
and drop time is not linear. The corresponding plot on double logarith-
mic paper at the bottom, however, reveals that there is a law describing
the relationship between height and drop time. This law is a power law
of the form

t=c-he (4.2)

Such a law is called a power law because ¢ changes as if it were a power
of h. The problem, then, is to verify the conjecture and determine cand
d. To begin, let us assume that in fact eqn. (4.2) holds. Now we take
the base 10 logarithm (of course, any base will work) on both sides
and obtain

logt =d-logh +logec.

In other words, if one plots log  versus log h, rather than ¢ versus h,
one should see a straight line with slope d and y-intercept b = logc
(c = 10%). This is done in figure 4.14 on the bottom.

Thus, when measurements in a log/log plot essentially fall onto a
straight line, then it is reasonable to work with a power law which gov-
erns the relationship between the variables; and moreover, the log/log
plot allows us to read off the exponent d in that power law as the slope
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log()
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Figure 4.14 : The data from table 4.13 shows graphically the dependence
of the drop time on the height of the fall. The data is displayed on the top
using linear scales resulting in a parabola-like curve. On the bottom a double
logarithmic representation of the same data is given. The data points appear
to lie on a line.

of the straight line. In our example we can draw the fitting line in the
double logarithmic plot and read off the slope d and the y-intercept
log c:

d=0.50 and logc = —0.34.

Thus, ¢ = 107234 and the power law determined from the measure-
ments is

t = 0.45 039, (4.3)

By the way, this is in good agreement with the Newtonian law of motion,
which implies that the distance fallen is proportional to the square of
the drop time. Formally,

g .2
h==t
2 )
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where g ~ 9.81m/sec? is the gravitational acceleration. Solving this
equation for t yields

t=1/%z0.452-h0'5,
g

which is to be compared with our empirical result in egn. (4.3).

When we discussed allometric growth in chapter 3, we saw an inter- Power Law for Allometric
esting example of a power law. Let us remember that we compared Growth
measured head sizes with the body height as a baby developed into

a child and then grew to adulthood. We learned that there were two

phases — one up until the age of three, and the second after that un-

til the growth process terminates. Using the approach of power laws

with the tools of double logarithmic graphs we now try to model the

allometric phase of growth by an appropriate power law. To this end

we reconsider the original data from table 3.8 and extend it by corre-

sponding logarithms (see table 4.15).

Age Height | Head Size Height Head Size

(years) | (cm) (cm) (logarithm) | (logarithm)
0 50 11 1.70 1.04
1 70 15 1.85 1.18
2 79 17 1.90 1.23
3 86 18 1.93 1.26
5 99 19 2.00 1.28
10 127 21 2.10 1.32
20 151 22 2.18 1.34
25 167 23 2.22 1.36
30 169 23 2.23 1.36
40 169 23 2.23 1.36

Table 4.15 : Body height and head size of a person with logarithms of the
same data.

The plot in figure 4.16 on log/log scales reconfirms the two-stage
growth of the measured person. We can fit two lines to the data, the
first one reaching until age three and the second one for the rest of
the data. The first line has a slope of about one. This corresponds to
an equal growth rate (see page 43) of head size and body height; the
two quantities are proportional and the growth is called isometric. The
second line has a much lower slope, about 1/3. This yields a power
law stating that the head size should be proportional to the cube root
of the body size. Or — turned around — we have that the body height
is proportional to the cube of the head size,

body height o< (head size)®.



188 4  Length, Area and Dimension

log(head size)

. log(body height)
et t T T ' t

1.7 1.9 2.1 2.3

Figure 4.16 : Double logarithmic plot of head size versus body height data.

The body grows much faster than the head; here we speak of allomet-
ric growth. Of course our little analysis should not be mistaken for a
serious research result. The measurements were taken from only one
person and only at large time intervals. Moreover, the test person was
bomn in the 19t century. Thus, the cubic growth law above is probably
neither exact nor representative.

Let us summarize. Ifthe x and y data of an experiment range over
very large numerical scales, then it is possible that there is a power law
which expresses y in terms of z. To test the power law conjecture we
plot the data in a log/log plot. If, then, the measurements fit a straight
line, we can read off the exponent of the law as the slope of that line.

Figure 4.12 supports that there is a power law (i.e., that eqn. (4.1) is true).
Or equivalently, we may then conclude that (u = length, s = compass setting)

d
u=c. (%) . 4.4)

For the coast of Britain, we would then find that d = 0.36. The result of this
graphical analysis is, thus, that the measured length u of the coast grows in
proportion to theprecision 1/s raised to the power 0.36,

1

UX 53z
50-36

At this point we have to discuss several aspects of relation (4.4). One Maps with More and
immediate consequence is that the length goes to infinity like 1/s% as s — 0. More Detail
But can we really let the compass setting s go to zero? Of course we can, but
there is some danger. If we let the size of the compass setting go to zero on
some particular map of Britain, then the law (4.4) would be invalid due to the
finite resolution of the map. In fact, in this case the measured length would tend
to a limit. The power law and its consequences are only valid in a measured
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Characteristic Power
Laws

Measuring Utah

Measuring the Koch
Curve

range of compass settings based on simultaneously picking maps with more
and more detail. In other words, the power law characterizes the complexity
of the coast of Britain over some range of scales by expressing how quickly
the length increases if we measure with ever finer accuracy. Eventually, such
measurements do not make much sense anymore because we would run out
of maps and would have to begin measuring the coast in reality and face all
the problems of identifying where a coast begins and ends, when to measure
(at low or high tide), how to deal with river deltas and so on. In other words,
the problem becomes somewhat ridiculous. But nevertheless, we can say that
in any practical terms the coast of Britain has no length. The only meaningful
thing we can say about its length is that it behaves like the above power law over
a range of scales to be specified and that this behavior will be characteristic.

What do we mean when we say ‘characteristic’? Well, we mean that the
exponents in the power laws are likely to be different when we compare the
coast of Britain with those of Norway or California. The same will be true if
we carry out an analogous experiment for the length of borders, e.g., the border
of Portugal and Spain. Now we understand why the Portuguese encyclopedia
came out with a larger value than the one in Spain. Since Portugal is very
small in comparison with Spain, it is very likely that the map used in Portugal
for the measurement of the common border had much more detail — was of
much smaller scale — than the one in Spain. The same reasoning explains the
differences for the measurements of the coast of Britain.’

Let us look at the border of the state of Utah, one of the 50 states in the
U.S.A. Figure 4.17 shows a map and collects a few measurements of the border
of Utah. Obviously (if you did not already know it) the border of Utah is very
straight.'” If we represent the measurements in a log/log diagram, we obtain
insight into the power law behavior. Apparently, the best way to fit a straight
line to the points is by using a practically horizontal line. That is to say, the
border of Utah has a power law with exponent d & 0 comparable with that of
a circle, and that means that the border has, for all practical purposes, a finite
length.

Let us now try to understand the importance and meaning of the power
law behavior in a pure mathematical situation. Recall the Koch island from
chapter 3. The Koch island has a coast which is formed by three identical
Koch curves. Now remember that each Koch curve can be divided into four
self-similar parts, which are similar to the entire curve via a similarity trans-
formation which reduces by a factor of 3.

Therefore, it is natural to choose compass settings covering sizes of the
form 1/3, 1/32, 1/33%, ...,1/3k. Of course there are two ways to work
with these compass settings: an impossible one and the obvious one. It
would be technically impossible to set compasses precisely to say 1/3* =

°The first measurements of this kind go back to the British scientist R. L. Richardson and his paper The problem of contiguity:
an appendix of statistics of deadly quarrels, General Systems Yearbook 6 (1961) 139-187.

1%We like Utah for many reasons. One of them is that we were introduced to fractals during a sabbatical in Salt Lake City during
the 1982/83 academic year. And it was there where we did our first computer graphical experiments on fractals in the Mathematics
and Computer Science Departments of the University of Utah.
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The Western United States

The table collects a few measure-
ments of the border of Utah based on
maps of various scales.

Washington

Marntana

Setting Length

500 km | 1450 km
100km | 1780 km
50 km | 1860 km
20km | 1890 km

Colorado

California

Figure 4.17

Log/Log Diagram

Log/log representation of measure-
ments of the border of Utah, where
u = length measured in units of 1
km; s = compass setting measured
in units of 1 km.

log(1/s) |

-2.8
Figure 4.18 L

-2.4 -2.0 -1.6 -12

0.012345679012. .. The thing to do would be to keep the compass setting
constant and look at magnifications by a factor of 1, 3, 3%, 33, .. Even that
would be a waste of time because, from the construction of the Koch curve,
we know exactly what the measurements would be, namely, 4/3 for compass
setting s = 1/3,16/9 for s = 1/9, ..., (4/3)* for s = (1/3)*.

Let us now represent these measurements in a log/log diagram (figure
4.20). Since we are free to choose a logarithm with respect to a convenient
base, we take logs so that for compass setting s = 1/3% andlength u = (4/3)*
we obtain

1 4
logs — = k and logz u = klog, 3
s
Combining the two equations we obtain for the desired growth law
1
log; u = dlogg 3
with

d = log, g ~ 0.2619.
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scale 1

scale 1/3
. -

scale 1/9

1 2 3 4 5

log 3{ 1/5)

Measuring the Koch Curve

Measuring the length of the Koch
curve with different compass set-
tings (scales).

Figure 4.19

Log/Log Plot for the Koch
Curve

Diagram  of loga(u)  versus
logs(1/s).

Figure 4.20

This number is smaller than the value d = 0.36 which we found for the
coastline of Britain. In other words, from this point of view, the coastline is
even more convoluted and rugged than the Koch snowflake curve.
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4.3 Fractal Dimension

In our attempts to measure the length of the coast of Britain, we learned that
the question of length — and likewise in other cases, of area or volume —
can be ill-posed. Curves, surfaces, and volumes can be so complex that these
ordinary measurements become meaningless. However, there is a way to
measure the degree of complexity by evaluating how fast length, or surface,
or volume increases if we measure with respect to smaller and smaller scales.
The fundamental idea is to assume that the two quantities — length or surface,
or volume and scale — do not vary arbitrarily but rather are related by a law,
which allows us to compute one quantity from the other. The kind of law
which seems to be relevant, as we explained previously, is a power law of the
form y o 2.

Such a law also turns out to be very useful for the discussion of dimension.
Dimension is not easy to understand. At the turn of the century it was one of
the major problems in mathematics to determine what dimension means and
which properties it has (see chapter 2). And since then the situation has be-
come somewhat worse because mathematicians have come up with some ten
different notions of dimension: topological dimension, Hausdorff dimension,
fractal dimension, self-similarity dimension, box-counting dimension, capac-
ity dimension, information dimension, Euclidean dimension, and more. They
are all related. Some of them, however, make sense in certain situations, but
not at all in others, where alternative definitions are more helpful. Sometimes
they all make sense and are the same. Sometimes several make sense but do
not agree. The details can be confusing even for a research mathematician."'
Thus, we will restrict ourselves to an elementary discussion of three of these
dimensions:

o self-similarity dimension
e compass dimension (also called divider dimension)
¢ box-counting dimension

All are special forms of Mandelbrot’s fractal dimension'> which in turn was
motivated by Hausdorff’s”® fundamental work from 1919. Of these three
notions of dimension the box-counting dimension has the most applications
in science. It is treated in the next section.

We discussed the concept of self-similarity in the last chapter. Let us recall
the essential points. A structure is said to be (strictly) self-similar if it can
be broken down into arbitrarily small pieces, each of which is a small replica
of the entire structure. Here it is important that the small pieces can in fact
be obtained from the entire structure by a similarity transformation. The best

The Notion of
Dimension

Self-Similar Structures

"Two good sources for those who want to pursue the subject are: K. Falconer, Fractal Geometry, Mathematical Foundations
and Applications, Wiley, New York, 1990, and J. D. Farmer, E. Ott, J. A. Yorke, The dimension of chaotic attractors, Physica 7D

(1983) 153-180.
ZFractal is derived from the Latin word frangere, which means ‘to break’.

PFelix Hausdorff (1868—1942) was a mathematician at the University of Bonn. He was a Jew, and he and his wife committed
suicide in 1942, after he had learned that his deportation to a concentration camp was only one week away.
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Scaling Factors Can Be
Characteristic

Felix Hausdorff, 1868-1942

Figure 4.21

way to think of such a transformation is what we obtain from a photocopier
with a reduction feature. For example, if we take a Koch curve and put it
on a copying machine, set the reduction to 1/3 and produce four copies, then
the four copies can be pasted together to give back the Koch curve. It then
follows that if we copy each of the four reduced copies by a reduction factor
of 1/3 four times (i.e., produce 16 copies which are reduced by a factor of 1/9
compared to the original), then these 16 copies can also be pasted together to
reproduce the original. With an ideal copier, this process could be repeated
infinitely often. Again, it is important that the reductions are similarities.

It would be a mistake to believe that if a structure is self-similar, then it is
also fractal. Take, for example, a line segment, or a square, or a cube. Each can
be broken into small copies which are obtained by similarity transformations
(see figure 4.22). These structures, however, are not fractals.

Here we see that the reduction factor is 1/3, which is, of course, arbitrary.
We could as well have chosen 1/2, or 1/7 or 1/356. But precisely in this fact
lies the difference between these figures and fractal structures. In the latter the
reduction factors — if they exist — are characteristic. For example, the Koch
curve only admits 1/3, 1/9, 1/27, etc. The point, however, which is common to
all strictly self-similar structures — fractal or not — is that there is a relation
between the reduction factor (scaling factor) and the number of scaled down
pieces into which the structure is divided.
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Self-Similarity of Line, i
Square, Cube L L L ' v, line
square
i il
7
cube
Figure 4.22
Object Number of Pieces | Reduction Factor
line 3 173
line 6 1/6
line 173 1/173
square 9 =3? 13
square 36 = 62 1/6
square 29929 = 1732 1/173
cube 27=13° 113
cube 216 = 6° 1/6
cube 5177717 = 1733 1/173
Koch curve 4 1/3
Koch curve 16 19
Koch curve 4% 1/3k

Apparently, for the line, square, and cube there is a nice power law relation
between the number of pieces a and the reduction factor s. This is the law

1

a=s—D,

4.5)

where D = 1 for the line, D = 2 for the square, and D = 3 for the cube. In
other words, the exponent in the power law agrees exactly with those numbers
which are familiar as (topological) dimensions of the line, square, and cube.
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Self-Similarity
Dimension

If we look at the Koch curve, however, the relationship of a =4 to s = 1/3
and @ = 16 to s = 1/9 is not so obvious.

But being guided by the relation for the line, square, and cube, we try a
little bit harder. We postulate that eqn. (4.5) holds anyway. In other words,
4 = 3P Taking logarithms on both sides, we get

logd = D - log 3,
or equivalently

log4
D=8 ~1.2619.
log 3
But do we get the same if we take smaller pieces, as with a reduction factor of
1/97 To check this out, we would postulate that 16 = 92, 0rlog 16 = D-log 9,
or D = log 16/ log 9, from which we compute

_log4? 2log4 log4
" log3? ~ 2log3 ~ log3
And as a general rule,

_ log4*
" log 3k

implies that D = log4/log 3. Hence the power law relation between the
number of pieces and the reduction factor gives the same number D, regardless
of the scale we use for the evaluation. It is this number D, a number between
1 and 2, that we call the self-similarity dimension of the Koch curve.

More generally, given a self-similar structure, there is a relation between
the reduction factor s and the number of pieces a into which the structure can
be divided; and that is
1

sD

~ 1.2619.

a

or equivalently

_ loga
" logl/s’

where D is called the self-similarity dimension. In cases where it is important
to be precise, we use the symbol D; for the self-similarity dimension in order
to avoid confusion with the other versions of fractal dimension. For the line,
the square and the cube we obtain the expected self-similarity dimensions 1, 2,
and 3, respectively. For the Koch curve we get D ~ 1.2619, a number whose
fractional part is familiar from measuring the length of the Koch curve in the
last section. The fractional part 0.2619...is exactly equal to the exponent of
the power law describing the measured length in terms of the compass setting
used! Before we discuss this in more detail let us try a few more self-similar
objects and compute their self-similarity dimensions. Figure 4.24 shows the
Sierpinski gasket, Sierpinski carpet, and the Cantor set. Table 4.23 compares
the number of self-similar parts with the corresponding scaling factors.
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Dimensions of Some Fractals Object Scale | Pieces Dimension
Self-similarity dimensions for other d a D,
fractal objects. Cantor set 1/3F [ 2F | log2/ log3 ~0.6309

Sierpinski gasket | 1/2% | 3*
Sierpinski carpet | 1/3% gk

Table 4.23

log 3 / log2 ~ 1.5850
log8/ log3 ~ 1.8928

What is the relation between the power law of the length measurement
using different compass settings and the self-similarity dimension of a fractal
curve? It turns out that the answer is very simple, namely,

Dy,=1+d

where d, as before, denotes the slope in the log/log diagram of length u versus
precision 1/s,i.e., 4 = ¢/s%. Letus see why. First, we simplify by choosing
appropriate units of length measurements such that the factor ¢ in the power

Self-Similarity
Dimension and Length
Measurement

Three More Fractals

The Sierpinski gasket, Sierpinski
carpet, and Cantor set are shown
with their building blocks, scaled
down copies of the whole.

Figure 4.24

3 parts
scaled by 1/2

8 parts
scaled by 1/3

2 parts
scaled by 1/3




4.3  Fractal Dimension 197

law becomes unity

1

v=g (4.6)
Taking logarithms, we obtain
1
logu =d - log > 4.7

where u is the length with respect to compass setting s. On the other hand
we have the power law a = 1/s, where a denotes the number of pieces in a
replacement step of the self-similar fractal with scaling factors. Inlogarithmic
form, this is

loga = D, -log % 4.8)

Now we can note the connection between length « and number of pieces a. At
scaling factor s = 1 we measure alength % = 1. This is true by construction:
above in equation (4.6) we have set up units so that u = 1 when s = 1. Thus,
when measuring at some other scale s, where the whole object is composed
of a small copies each of size s, then we measure a total length of a times s,

U=2a-8s.
This is the key to the following conclusion. Taking logarithms again we get
logu =loga + log s.
In this equation we can substitute the logarithms log w and log a from equations
(4.7) and (4.8). This yields
1 1
d‘log; =D, ~logg + log s.

Since log1/s = —log s we get
—d-logs=—-D, logs+logs

and dividing by log s and sorting terms we finally arrive at
D, =1+4d.

The result is that the self-similarity dimension can be computed in two
equivalent ways:

e Based on the self-similarity of geometric forms find the power law describ-
ing the number of pieces @ versus 1/s, where s is the scale factor which
characterizes the parts as copies of the whole. The exponent Dy in this law
is the self-similarity dimension.

o Using the compass-type length measurement, find the power law relating
the length with 1/s, where s is the compass setting. The exponent d in this
law, incremented by 1, is the self-similarity dimension, Dy, = 1 + d.
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Motivated by this result we may now also generalize the dimension found
in the alternative to shapes that are not self-similar curves such as coastlines
and the like. Thus, we define the compass dimension (sometimes also called
divider or ruler dimension) by

D.=1+d

where d is the slope in the log/log diagram of the measured length u versus
precision 1/s. Thus, since d = 0.36 for the coast of Britain, we can say that the
coast has a fractal (compass) dimension of about 1.36. The fractal dimension
of the state border of Utah of course is equal to 1.0, the fractal dimension of
the straight line.

3/2-Curve: Two Steps

The first two replacement steps in

the construction of the 3/2-curve. ® B = RS . S
[ —— 3 ., — ~——’.

Figure 4.25

We continue with another basic example of a self-similar curve, the 3/2-
curve. The construction process starts from a line segment of length 1. In
the first step we replace the line segment by the generator curve, a polygonal
line of 8 segments, each of length 1/4 (see figure 4.25). That is to say, the
polygonal line has length 8/4, the length has doubled. In the next step, we
scale down the polygonal line by a factor of 1/4 and replace each line segment
of length 1/4 in step 1 by that scaled down polygonal line.

After the second step, we have 82 line segments, each of length 1/42, so
that the total length is now 82/42 = 22, In the next step, we scale down the
generator by a factor of 1/4% and replace each line segment of length 1/42% in
step 2 by that scaled down generator, and so on. Apparently, the length of the
resulting curve is doubled in each step (i.e., after the step k, the length is 2*).
The number of line segments grows by a factor of 8 in each step (i.e., after the
k-th step we have 8% line segments of length 1/4%). Entering these data in a
log/log diagram (preferably working with log,), we obtain figure 4.26.

Measuring the slope of the fitted line, we obtain d = 0.5. More directly, the
length computed with line segments of length 1/4* is 2%, and this is reflected
in the power law

U =

o

1
$0.5

Measuring the
3/2-curve
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log ()

Log/Log Plot for the 3/2-Curve

Length versus 1/scale in the 3/2-
curve. The result is a line with slope
1/2.

log 4( 1/5)

Figure 4.26

4

Metabolic Rate As Power Law

The reduction law of metabolism,
demonstrated in logarithmic coordi-
nates, showing basal metabolic rate
as a power function of body mass.

1 2 3 4 5
log(body mass)

The Fractal Nature of
Organisms

Figure 4.27

with exponent d = 1/2. Thus, the compass dimension and the self-similarity
dimension are equal to D = 1+ d = 1.5, which justifies the name 3/2-curve.

We conclude this section with some fascinating speculations, which go
back to a 1985 paper by M. Sernetz and others,'* concerning the fractal nature
of organs. This paper discusses the metabolic rates of various animals (e.g.,
rats, dogs and horses) and relates them to their respective body masses. The
metabolic rate is measured in Joules per second and the mass in kilogram.
Since body mass is proportional to volume and since volume scales as 2,
when 7 is the scaling factor, a first guess would be that the metabolic rate
should be proportional to the body mass (i.e., proportional to 73). Figure 4.27
reveals, however, that the exponent in the power law is significantly different

“From M. Sernetz, B. Gelléri, F. Hofman, The organism as a bioreactor: interpretation of the reduction law of metabolism in
terms of heterogeneous catalysis and fractal structure, Journal Theoretical Biology 117 (1985) 209-230.
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Figure 4.28 : Arterial and venous casts of a kidney of a horse as an example of fractal structures in organisms. Both
systems in the natural situation fit entirely into each other and yet represent only the negative of the kidney. The
remaining interspace between the vessels corresponds to the actual tissue of the organ (see also the color plate 2).
Pictures courtesy of Manfred Sernetz.

from this expected value 1.
The slope « for the fitted line is approximately 0.75. In other words, if m
denotes the metabolic rate and w the body mass, then

logm = alogw + logc,

where log ¢ is the m-intercept. Thus, m = cw®.

equivalent to m o< 7%, where 3 = 2.25.

This means that our guess, according to which the metabolic rate should
be proportional to the mass or volume, is wrong. It merely scales according
to a fractal surface of dimension 2.25. How can that be explained? One of the
speculations is that the above power law for the metabolic rate in organisms is
a reflection of the fact that an organism is, in some sense, more like a highly
convoluted surface than a solid body. In carrying this idea a little further —
maybe too far — we could say that animals, including humans, look like three-
dimensional objects, but they are much more like fractal surfaces. Indeed, if
we look beneath the skin, we find all kinds of systems (e.g., the arterial and
venous systems of a kidney) which are good examples of fractal surfaces in
their incredible vascular branching (see color plate 2). From a physiological
point of view, it is almost self-evident that the exchange functions of a kidney
are intimately related to the size of the surfaces of its urinary and blood vessel
systems. It is obvious that the volume of such a system is finite; it fits into the
kidney! At the same time, the surface is in all practical terms infinite! And

Using w o r°, this is
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the relevant measuring task, quite like the ones for coastlines, would be to
determine how the measured surface area grows as we use higher and higher
accuracy. This leads to the fractal dimension, which characterizes some as-
pects of the complexity of the bifurcation structure in such a system. This
numerical evaluation of characteristic features of vessel systems can poten-
tially become an important new tool in physiology. For example, questions
like the following have been asked: What are the differences between systems
of various animals? Or, is there a significant change in the fractal dimension
when measured for systems with certain malfunctions?
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44 The Box-Counting Dimension

In this section we discuss our third and final version of Mandelbrot’s fractal
dimension: the box-counting dimension. This concept is related to the self-
similarity dimension: it gives the same numbers in many cases, but also
different numbers in some others.

So far, we have seen that we can characterize structures which have some Non-Self-Similar
very special properties such as self-similarity, or structures like coastlines, Structures
where we can work with compasses of various settings. But what can be done
if a structure is not at all self-similar and as wild as figure 4.29, for example?

A Wild Fractal

A wild structure with some scaling
properties.

Figure 4.29

In such a case, there is no curve which can be measured with compasses;
and there is no self-similarity, though there are some scaling properties. For
example, the ‘cloud’ in the lower right corner looks somewhat similar to the
large ‘cloud’ in the upper portion. The box-counting dimension proposes a
systematic measurement, which applies to any structure in the plane and can
be readily adapted for structures in space. The idea is very much related to
the coastline measurements.

We put the structure onto a grid with mesh size s, and count the number of

grid boxes which contain some of the structure. This gives a number, say N.
Of course, this number will depend on the size s. Therefore we write N(s).
Now we change s to progressively smaller sizes and count the corresponding
numbers N(s)., Next we make a log/log diagram; we plot the logarithms
log(N(s)) versus log(1/s).

We then try to fit a straight line to the plotted points of the diagram and The Box-Counting
measure its slope Dyp. This number is the box-counting dimension, another Dimension
special form of Mandelbrot’s fractal dimension. Figure 4.30 illustrates this
procedure using only two measurements. We find a slope of about Dy = 1.45.



4.4  The Box-Counting Dimension 203

; : Box-Count
2| | |
o | o ot The wild structure is box-counted
\(' | fe? | 2t using two grids. The slope of the line
— — — = .
o 8 -'-%;‘\«; A TS ! is log(52/19)/ log 2 ~ 1.45.
=) oD —_—
=T m “'// \\&\‘

log(N(s))

184

16 1

1.4 -

s=1/6  N(5)=19

s=1/12 N(s)=52

—— log(1/s)
4
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Different

Figure 4.30

For practical purposes it is often convenient to consider a sequence of grids
where the mesh size is reduced by a factor of 1/2 from one grid to the next. In
this approach each box from a grid is subdivided into four boxes each of half
the size in the next grid. When box-counting a fractal using such grids we
arrive at a sequence of counts N (2“k), k=0,1,2,... Here we have adopted
the convention to set s = 20 = 1 for the coarsest grid. The slope of the line
from one data to the next in the corresponding log/log diagram is

log N(2-(+1)) — Jog N(27F)
log 2k+1 — log 2k

N(2—(Ic+1))
N(2-Fk)

= log,

where in the term on the right we have used logarithms with base 2 while the
term on the left holds for any base. The result thus is the base 2 logarithm of
the factor by which the box-count increases from one grid to the next. This
slope is an estimate for the box-counting dimension of the fractal. In other
words, if the number of boxes counted increases by a factor of 2° when the
box size is halved, then the fractal dimension is equal to D.

It is a nice exercise to experimentally verify the fact that the box-counting
dimensions Dy of the Koch curve and the 3/2-curve are the same as the re-
spective self-similarity and compass dimensions. Note, however, that in the
plane a box-counting dimension Dy, will never exceed 2. The self-similarity
dimension Dy, however, can easily exceed 2 for a curve in the plane. To
convince ourselves, we need only construct an example where the reduction
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Self-Intersection

First steps of a curve generation with

self-intersections.

step 0

step 3

Figure 4.31

factor is s = 1/3 and the number of pieces in a replacement step is a > 9 (see
figure 4.31). Then

loga
* logl/s >

The reason for this discrepancy is that the curve generated in figure 4.31 has
overlapping parts, which, by principle, are counted only once in the box-
counting method, but with corresponding multiplicities in the computation of
the self-similarity dimension. For this curve we have s = 1/3 and a = 13
and, thus, the self-similarity dimension is

_ log13

= Tog3 = 2.335.

The box-counting dimension is the one most used in measurements in
all the sciences. The reason for its dominance lies in the easy and automatic
computability by machine. It is straightforward to count boxes and to maintain
statistics allowing dimension calculation. The program can be carried out
for shapes with and without self-similarity. Moreover, the objects may be
embedded in higher dimensional spaces. For example, when considering
objects in common three-dimensional space, the boxes are not flat but real
three-dimensional boxes with height, width, and depth. But the concept also
applies to fractals such as the Cantor set which is a subset of the unit interval,
in which case the boxes are small intervals.

Advantages of
Box-Counting
Dimension
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Figure 4.32 : Count all boxes that intersect (or even touch) the coastline of Great Britain, including Ireland.

Box-Counting

As an example let us reconsider the classic example, the coastline of Great

Dimension of the Coast Britain. Figure 4.32 shows an outline of the coast with two underlying grids.

of Great Britain

Fractal Dimensions
and Their Limitations

Having normalized the width of the entire grid to 1 unit, the mesh sizes are 1/24
and 1/32. The box-count yields 194 and 283 boxes that intersect the coastline
in the corresponding grids (check this carefully, if you have the time). From
these data it is now easy to derive the box-counting dimension. When entering
the data into a log/log diagram, the slope of the line that connects the two points
is

_ log283 —log194 2.45-229
" log32—-log24  1.51—1.38

1.31.

This is in nice agreement with our previous result from the compass dimension.

The concept of fractal dimension has inspired scientists to a host of inter-
esting new work and fascinating speculations. Indeed, for a while it seemed as
ifthe fractal dimensions would allow us to discover a new order in the world of
complex phenomena and structures. This hope, however, has been dampened
by some severe limitations. For one thing, there are several different dimen-
sions which give different answers. We can also imagine that a structure is a
mixture of different fractals, each one with a different value of box-counting
dimension. In such a case, the conglomerate will have a dimension which is
simply the dimension of the component(s) with the largest dimension. That
means the resulting number cannot be characteristic for the mixture. What
we would really like to have is something more like a spectrum of numbers
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which gives information about the distribution of fractal dimensions in a struc-
ture. This program has, in fact, been carried out and runs under the theme
multifractals.”

The historical roots of fractal dimensions are in Hausdorff’s work from
1918'° although his definition of what became later known as Hausdorff di-
mension is not practical in the sense that it is very difficult to compute even
in elementary examples and nearly impossible to estimate in practical appli-
cations. Nevertheless, it is very important in theory and we will see a glimpse
of that in the appendix dealing with multifractal measures. For an account
of the various notions of dimensions related to fractal dimensions as well as
their mutual relation we refer to the excellent books of Gerald A. Edgar'’
and Kenneth Falconer."® We conclude this section with both the definition
of the Hausdorff dimension, which is quite technical, and its relation to the
box-counting dimension.

Definition of Hausdorff
Dimension

We will restrict ourselves to a definition of the Hausdorff dimension for
sets A which are imbedded in Euclidean space

R"={z|z=(z1,...,2n),2; € R}

for some natural number n. We need some mathematical notation to
arrive at a definition. Firstly, there is a distance function d(z,y), the
Euclidean distance of z and y in R",

n

dz,y) = \| (2 — i)

i=0

Secondly, there is the infimum and supremum of a subset X of real
numbers,

inf{zx € X'} largest lower bound of X,
sup{z € X} = smallest upper bound of X.

This means that @ = inf{z € X} provided a < z forallz € X
and for any € > 0O there is * € X such that z — a < €. Similarly,
b = sup{z € X} provided b > z forall z € X and forany & > 0
there is ¢ € X such that b — 2 < £. Using these notions we can now
define the diameter of a subset U of R".

diam(U) = sup{d(z,y) | z,y € U}.

The last notion we need is that of an open cover of a subset A of R™.
A subset U of R™ is called open provided for any z € U there is a

See B. B. Mandelbrot, An introduction to multifractal distribution functions, in: Fluctuations and Pattern Formation, H. E.
Stanley and N. Ostrowsky (eds.), Kluwer Academic, Dordrecht, 1988; J. Feder, Fractals, Plenum Press, New York, 1988; K.
Falconer, Fractal Geometry, Mathematical Foundations and Applications, John Wiley & Sons, Chichester, 1990.

'°E. Hausdorff, Dimension und duferes Maf3, Math. Ann. 79 (1918) 157-179.

"G. A. Edgar, Measure, Topology and Fractal Geometry, Springer-Verlag, New York, 1990.

18K . Falconer, Fractal Geometry, Mathematical Foundations and Applications, John Wiley & Sons, Chichester, 1990.
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small ball B¢(z) = {y € R™ | d(z,y) < €} of radius € > 0 centered
at 2 which is entirely in U. A family of open subsets {Uy, Uz, Us, . . .}
is called an open cover (countable) of A provided

o0
AcC U U..
i=1

Now we are ready to define the Hausdorff dimension of A: Lets and
€ be positive real numbers. Then define

o0 {th,Us,...}
hi(A) = inf Zdiam(Ui)’ open cover of A with
i=0 diam(U;) < €

Thus, the infimum is extended over all open covers of A for which the
covering sets U; have diameter less than €. For each such cover we
take the diameters of the open sets of the cover, raise them to the sth
power, and take the sum. This sum may be finite or infinite. As we
decrease ¢ the class of permissible covers of A is reduced. Therefore,
the infimum increases and so approaches a limitas € — 0 whiuch can
be infinite or a real number. We write

B (4) = lim hi(A).

The limit h* (A) is called the s-dimensional Hausdorff measure of A. In
particular, it follows that s-dimensional Hausdorff measure of the empty
setis 0and h*(A) < h®(B)if A C B. Moreover h!(A) is the length
of a smooth curve A; hZ(A) is the area of a smooth surface A up to
a factor of m/4; h¥(A) is the volume of a smooth three-dimensional
manifold A up to a factor of 47/3. Another important property is this:
If f: A — R"satisfies a Holder condition for all pairs z,y € A, i.e.,

d(f(z), f(y)) < e(d(=z,y))*
for some constants ¢ > 0 and a > 0, then
R/%(f(A)) < ¢*/*h°(A).

For example, if f is a similarity transformation with contraction factor
0 < ¢ < 1,then f satisfies a Hélder condition with @ = 1, and
h*(f(A)) < ¢*h*(A). Moreover, Hausdorff proved that for any set A
the following holds true. There is a number D (A) such that

siay_ ) oo fors < Dy(A)
h(A)‘{o for s > Dy (A).

This number Dy (A) is defined as the Hausdorff dimension
Dy (A) = inf{s | h°(4) = 0} = sup{s | h*(A4) = co}.

If s = Dyg(A),then h*(A)may be zero, infinite, or some positive
real number. We finally collect some fundamental properties of the
Hausdorff dimension:
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(1) If A C R", then Dy (A} <n.

(2 If AC B,then Dy(A) < Dy(B).

(8) If Ais a countable set, then Dy (A) = 0.

4 1fACR"and Dg(A) < 1,then A is totally disconnected.
(5) Let C', be the Cantor set. Then Dy (Coc) = log 2/ log 3.

Let us give a heuristic argument for property (5), assuming that
0 < h*(Cyx) < o fors = Dy (Cs). Note that C splits into two
parts, Cr, = Co, N [0,1/3], and Cr = C, N [2/3, 1] which are both
similar to C'», but scaled by a factor of ¢ = 1/3. Thus

h*(Cox) = R*(CL) + R*(CR) = R (Cx) + R (Cy).
Now we divide by ~*(Cx,) # 0 andobtain 1 = 2¢*,or s = log 2/ log 3.

There are several difficulties in evaluating the Hausdorff dimension in a

concrete case. The box-counting dimension in some sense is motivated by

avoiding these difficulties.

Hausdorff Dimension Versus
Box-Counting Dimension

The central difficulty in evaluating the Hausdorff dimension is the one
given by the terms Z;ﬁn diam(U;)*. The box-counting dimension sim-
plifies this problem by replacing the terms diam (U;)* by the terms 4°.
A formal definition of the box-counting dimension D, of any bounded
subset A of R” proceeds as follows. Let Ns(A) be the smallest num-
ber of sets of diameter at most & which cover A.' Then

. log Ns(A)
DlA) = 1 Sog 176

provided that limit exists.

There are several equivalent definitions of Dy,(A). For example,
consider a subdivision of R" into a lattice of grid size 8. That is a
tessellation of R™ by cubes of side length 4. Now let N, (A} be the
number of cubes that intersect A. It is a fact that

o log Ng(A)
Dy(4) = Jim =555

provided the limit exists. Roughly speaking the definition says that
Ns(A) ox 7* for small 8, where s = D,(A). More precisely it says
that

. oo fors < Dy(A)
Ns(A)6® — { 0 fors > D,(A).

But

A with diam(U;) < 6

Ns(A)6* = inf { > o6

{Uy,U,, ...} finite cover of}

“Since A is bounded we can always assume that the cover is finite.
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This should be compared with the definition of the Hausdorff dimension
to see that the only difference is in the terms diam(U;)® versus the
term 6°.

Unfortunately it is not true that the Hausdorff dimension and the box-
counting dimension always are the same.”” For example, it can be shown,
that Dy(A) = nfor any dense subset of R". In other words, the box-counting
dimension of the set of rational numbers in [0,1] is 1, the Hausdorff dimension
of the same (countable) set is 0. Another striking example is the set A =
{0,1/2,1/3,1/4,...}. This set has a fractional box-counting dimension. In
fact Dy(A) = 1/2. In other words, if Dp(A) is not an integer we may not
blindly conclude that A has fractal properties. But it is true that the Hausdorff
dimension and the box-counting dimension do agree for a large class of sets
which includes the classical fractals like the Cantor set, the Sierpinski gasket,
Sierpinski carpet and many others, as we will report at the end of chapter 5.

“For details see K. Falconer, Fractal Geometry, Mathematical Foundations and Applications, John Wiley & Sons, Chichester,
1990.
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4.5 Borderline Fractals: Devil’s Staircase and Peano Curve

The fractals discussed in this chapter so far have a noninteger fractal dimension,
but not all fractals are of this type. Thus, we want to expand our knowledge
with two examples of fascinating fractals which represent very extreme cases:
the first is the so-called devil’s staircase, which implies a fractal curve of
dimension 1.0. The second is a Peano curve of dimension equal to 2.0.

Devil’s Staircase:
Construction

The column construction of the
devil’s staircase.

step 1 step 2

Figure 4.33

step 3

The Complete Devil’s
Staircase

The devil’s staircase is the boundary
line between the black and the white
part of the square.

Figure 4.34

The first one of these objects, the devil’s staircase, is intimately related
to the Cantor set and its construction. We take a square with sides of length
1. Then we start to construct the Cantor set on the base side (i.e., we take
away successively middle thirds in the usual way). For each middle third
of length 1/3% which we take away, we paste in a rectangular column with
width 1/3% and a certain height. Let us see how this is done in figure 4.33.
In the first step, a column is erected over the middle third of the base side
— the interval [1/3, 2/3] — of the square with height 1/2. In the second
step, we erect two columns, one of height 1/4 over the interval [1/9, 2/9]
and the other of height 3/4 over the interval [7/9, 8/9]. In the third step,
we erect four columns of heights 1/8, 3/8, 5/8, 7/8, and in the kth step, we
erect 2°~1 columns of heights 1/2%,3/2%, ..., (2¥ — 1)/2*. In the limit, we
obtain an area, the upper border of which is called the devil’s staircase. Figure

Devil’s Staircase
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4.34 shows an image obtained in a computer rendering. We see a staircase
ascending from left to right, a staircase with infinitely many steps whose step
heights become infinitely small. As the process continues, the square in figure
4.33 gets an upper white and a lower black part. In the limit, there will be a
perfect symmetry. The white part will be an exact copy of the black part. Put
another way, the white part is obtained from the black by a rotation of 180°. In
this sense the devil’s staircase divides the square in two halves fractally. One
immediate consequence of this argument is that in the limit the area beneath
the staircase is exactly half of the initial square.

We will look again at the columns in figure 4.33 and observe that the Area under the Devil’s
two narrow columns of width 1/9 in step 2 make one column of height 1; Staircase
likewise, the four columns of width 1/27 in step 3 make two columns of

height 1; and so on. In other words, if we move the columns from the

right side over to the left and vertically cut the center column of width

1/3 into two equal parts, which we put on top of each other, we obtain

a figure which eventually fills half the square (see figure 4.35).

step 1 step 2 step 3

Figure 4.35 : The area under the devil's staircase is 1/2.

With the devil’'s staircase, we can also check an explicit argument.
If we group the areas of the columns according to figure 4.35 we obtain
the total area A under the staircase using a geometric series as follows:

A—l 1+1 l+§. +_1. l+§+§+z + .
T3 2 9\4 4 27\8 8 8 8
T 69 3 9 3k

The sum of the geometric series in the bracket is 3. Thus, the result
isA=3+3=1

Length of the Devil’s Now, to move on to our next question: how long is the devil’s staircase?
Staircase A polygonal approximation of the staircase makes it obvious that

e the staircase is acurve, which has no gaps, and
o the length of that curve is exactly 2!
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Thus, we have constructed a curve which is fractal, yet it has a finite length.
In other words, the slope d in the log/log diagram of length versus 1/scale is
d = 0, and the fractal dimension would be D = 1 4+ d = 1! This result is
important because it teaches us that there are curves of finite length which we
would like to call fractal nevertheless. Moreover, the devil’s staircase looks
self-similar at first glance, but is not. One may ask, of course, why those curves
are called fractal in the first place? An argument in support of spending the
characterization ‘fractal’ in this case is the fact that the devil’s staircase is the
graph of a very strange function, a function, that is constant everywhere except

in those points that are in the Cantor set.

Polygon Construction of
Devil’'s Staircase

It will be helpful in following the construction if you compare figure 4.33
with the following figure 4.36. We construct a polygonal line for each
step in figure 4.33 by walking in horizontal and vertical directions only.
We always start in the lower left corner and walk horizontally until we
hit a column. At this point, we play fly and walk up the column until
we reach the top. There we again walk horizontally until we hit the
next column which we again surmount. At the top, we again walk on
horizontally and then vertically, continuing on in the same pattern as
often as necessary until we reach the right upper corner. In each step,
the polygonal lines constructed in this way have length 2 because,
when summing up all horizontal lines the result is 1 and the sum of all

vertical lines is also 1.

Polygonal Construction

step 1 step 2

step 3

Figure 4.36

The area under the devil’s staircase is not self-similar. Let us explain (see
figure 4.37). The area can be broken down into six identical building blocks.
Block 1 is obtained from the entire area by contracting the image horizontally
by a factor of 1/3 and vertically by a factor of 1/2 (i.e., two different factors).
This is why the object is not self-similar. For a self-similarity transformation,
the two factors would have to be identical. Block 6 is the same as block 1.
Moreover, arectangle with sides of length 1/3 and 1/2 can house exactly one
copy of block 1 together with a copy obtained by rotation by 180 degrees. This
explains blocks 2 and 3, or 4 and 5. A contraction which reduces an image

Self-Affinity
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Self-Affinity

Figure 4.37

by different factors horizontally and vertically is a special case of a so-called
affine transformation. Objects that are composed of affine copies of the whole
are called self-affine. The area under the devil’s staircase is an example.
Devil’s Staircase by The devil’s staircase may look like an odd mathematical invention. It
Curdling is, indeed, a mathematical invention; but it isn’t really so odd, for it has great
importance in physics.?’ We now discuss a problem — not really from physics,
though it points in that direction — where the staircase comes out naturally.

Let us modify the Cantor set (see figure 4.38). Our initial object is no longer
a line segment but rather a bar with density 79 = 1. We suppose that we can
compress and stretch the bar arbitrarily. The initial bar has length [y = 1 and
therefore mass mg = 1. Now we cut the bar in the middle, obtaining two
identical pieces of equal mass m; = 1/2. Next we hammer them so that the
length of each reduces to {; = 1/3 without changing the cross-section. Since
mass is conserved, the density in each piece must increase to ry = mq/l; =
3/2. Repeating this process, we find that in the nt" generation we have N = 2"
bars, each with a length l,, = 1/3"™ and a mass m,, = 1/2". Mandelbrot calls
this process curdling since an originally uniform mass distribution by this
process clumps together into many small regions with a high density. The
density of each of the small pieces is r, = mn/l,. Figure 438 shows the
density as height of the bars in each generation.

Assume now that the curdling process has been applied infinitely often,
and we think of the resulting structure as put on the unit interval. Then we
can ask: what is the mass M (z) of the structure in the segment from 0 to £?22
The mass does not change in the gaps, but it increases by infinitesimal jumps
at the points of the Cantor set. The graph of the function M (x) turns out to
be none other than the devil’s staircase.

The Peano Curve Having the fractal dimension D = 1, and yet not being an ordinary curve,
the devil’s staircase is one extreme case. Let us now look at extreme cases of

2p, Bak, The devil’s staircase, Phys. Today 39 (1986) 38-45.
This can be written formally as M (z) = fOI dm(t).
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Curdling

Density shown as height in the suc-
cessive generations of Cantor bars.

Figure 4.38

the opposite kind, curves which have fractal dimension D = 2. The firstcurve
of this kind was discovered by G. Peano in 1890. His example created quite
a bit of uncertainty about possible or impossible notions of curves, and for
that reason also for dimension. We have already introduced the Peano curve
in chapter 2 (see figure 2.35). Recall that in its construction, line segments
are replaced by a generator curve consisting of nine segments, each one being
one-third as long.

Based on the scaling factor 1/3 we measure the curve with s = 1/3%,
k=0,1,2,... as the size s of the compass setting. This yields total lengths
of u = (9/3)* = 3%, Assuming the power law v = ¢+ 1/s%, we first note that
¢ = 1 because for s = 1 we have u = 1. Moreover, we conclude from the
equation logu = d - log 1/s that

logu log 3% _k

- logl/s  log3k k -

In other words, D = 1+d = 2 (i.e.,the Peano curve has fractal dimension 2).
This reflects on the area-filling property of the Peano curve. The discussion of
the self-similarity and area-filling properties of the Peano curve is continued
in chapter 7.



Chapter 5

Encoding Images by Simple
Transformations

Fractal geometry will make you see everything differently. There is danger in
reading further. You risk the loss of your childhood vision of clouds, forests,
flowers, galaxies, leaves, feathers, rocks, mountains, torrents of water, car-
pets, bricks, and much else besides. Never again will your interpretation of
these things be quite the same.

Michael F. Barnsley'

So far, we have discussed two extreme ends of fractal geometry. We have
explored fractal monsters, such as the Cantor set, the Koch curve, and the Sier-
pinski gasket; and we have argued that there are many fractals in natural struc-
tures and patterns, such as coastlines, blood vessel systems, and cauliflowers.
We have discussed features, such as self-similarity, scaling properties, and
fractal dimensions shared by those natural structures and the monsters; but
we have not yet seen that they are close relatives in the sense that maybe a
cauliflower is just a ‘mutant’ of a Sierpinski gasket, and a fern is just a Koch
curve ‘let loose’. Or phrased as a question, is there a framework in which a
natural structure, such as a cauliflower, and an artificial structure, such as a
Sierpinski gasket, are just examples of one unifying approach; and if so, what
is it? Believe it or not, there is such a theory, and this chapter is devoted to
it. It goes back to Mandelbrot’s book, The Fractal Geometry of Nature, and a
beautiful paper by the Australian mathematician Hutchinson.” Barnsley and

"Michael F. Barnsley, Fractals Everywhere, Academic Press, 1988.
*J. Hutchinson, Fractals and self-similarity, Indiana Journal of Mathematics 30 (1981) 713-747. Some of the ideas can already
be found in R. F. Williams, Compositions of contractions, Bol. Soc. Brasil. Mat. 2 (1971) 55-59.
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Berger have extended these ideas and advocated the point of view that they
are very promising for the encoding of images.” In fact, this will be the focus
of the appendix on image compression.

We may regard fractal geometry as a new language in mathematics. Asthe Fractal Geometry As a
English language can be broken down into letters and the Chinese language Language
into characters, fractal geometry promises to provide a means to break down
the patterns and forms of nature into primitive elements, which then can be
composed into ‘words’ and ‘sentences’ describing these forms efficiently.

The word ‘fern’ has four letters and communicates a meaning in very
compact form. Imagine two people talking over the telephone. One reports
about a walk through a botanical garden admiring beautiful ferns. The person
on the other end understands perfectly. As the word fern passes through the
lines, a very complex amount of information is transmitted in very compact
form. Note that ‘fern’ stands for an abstract idea of a fern and not exactly
the one which was admired in the garden. To describe the individual plant
adequately enough that the admiration can be shared on the other end, one
word is not sufficient. We should be constantly aware of the problem that
language is extremely abstract. Moreover, there are different hierarchical
levels of abstractness, for example, in the sequence: tree, oak tree, California
oak tree,...

Here we will discuss one of the major dialects of fractal geometry as if it
were a language. Its elements are primitive transformations, and its words are
primitive algorithms. For these transformations together with the algorithms,
in section 1.2 we introduced the metaphor of the Multiple Reduction Copy
Machine (MRCM),* which will be the center of interest in this chapter.

M. F. Barnsley, V. Ervin, D. Hardin, and J. Lancaster, Solution ofan inverse problem forfractals and other sets, Proceedings
of the National Academy of Sciences 83 (1986) 1975-1977; M. Berger, Encoding images through transition probabilities, Math.
Comp. Modelling 11 (1988) 575-577. A survey article is: E. R. Vrscay, Iterated function systems: Theory, applications and
the inverse problem, in: Bélair, J. and Dubuc, S., (eds.), Fractal Geometry and Analysis, Kluwer Academic, Dordrecht, 1991.
A very promising approach seems to be presented in the recent paper A. E. Jacquin, Image coding based on a fractal theory of
iterated contractive image transformations, to appear in: IEEE Transactions on Signal Processing. See also the chapter Fractal
Image Compression by Y. Fisher,R. D. Boss,and E. W. Jacobs, to appear in Data Compression, J.Storer (ed.), Kluwer Academic,
Norwell, MA.

*A similar metaphor has been used by Barnsley in his popularizations of iterated function systems (IFS), which is the mathe-
matical notation for MRCMs.
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5.1 The Multiple Reduction Copy Machine Metaphor

MRCM = IFS

An MRCM for
Sierpinski Gaskets

Let us briefly review the main idea of the MRCM, the multiple reduction
copy machine. This machine provides a good metaphor for what is known as
deterministic iterated function systems (IFS) in mathematics. From here on
we use both terminologies interchangeably; sometimes it is more convenient
to work with the machine metaphor, while in more mathematical discussions
we tend to prefer the IFS notion. The reader may wish to skip back to the first
chapter to take a look at figures 1.8 and 1.9. The copy machine takes an image
as input. It has several independent lens systems, each of which reduces the
input image and places it somewhere in the output image. The assembly of
all reduced copies in some pattern is finally produced as output. Here are the
dials of the machine

Dial 1: number of lens systems,
Dial 2: setting of reduction factor for each lens system individually,

Dial 3: configuration of lens systems for the assembly of copies.

The crucial idea is that the machine runs in a feedback loop; its own
output is fed back as its new input again and again. While the result of this
process is rather silly when there is only one reduction lens in the machine
(only one point remains as shown in figure 1.8), this banal experiment turns
into something extremely powerful and exciting when several lens systems are
used. Moreover, we allow other transformations besides ordinary reductions
(i.e., transformations more general than similarity transformations).

Imagine that such a machine has been built and someone wants to steal its
secret — its construction plan. How much time and effort is necessary to get
all the necessary information? Not very much at all. Our spy just has to run
the machine once on an arbitrary image.” One copy reveals all the geometric
features of the machine which we now start to operate in feedback mode.

Consider an MRCM with three lens systems, each of which is set to reduce
by a factor of 1/2. The resulting copies are assembled in the configuration of
an equilateral triangle. Figure 5.1 shows the effect of the machine run three
times beginning with different initial images. In (a) we take a disk and use
different shadings to keep track of the effect of the individual lens systems.
In (b) we try a truly ‘arbitrary’ image. In just a few iterations the machine,
or abstractly speaking the process, throws out images which look more and
more like a Sierpinski gasket. In (c) we start with a Sierpinski gasket and
observe that the machine has no effect on the image. The assembled reduced
copies are the same as the initial image. That is, of course, because of the
self-similarity property of the Sierpinski gasket.

5 Almost any image can be used for this purpose. Images with certain symmetries provide some exceptions. We will study these

in detail further below.
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MRCM for the Sierpinski
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Figure 5.1

Let us summarize this first experiment. No matter which initial image we
take and run the MRCM with, we obtain a sequence of images which always
tends towards one and the same final image. We call it the attractor of the
machine or process. Moreover, when we start the machine with the attractor,
then nothing happens, one says the attractor is left invariant or fixed. Perhaps
it will help to explain this result if we compare our experiment with a physical
one in which we have a bowl (figure 5.2, left) and observe how a little iron
ball put into different initial positions and then let loose always comes to rest
at the bottom, the rest point. But if we put the ball right at the bottom to begin
with, nothing happens.

The bowl here corresponds to our machine. Initial positions of the ball here
correspond to initial images in the machine. Observing the path of the ball in
time corresponds to running the machine repeatedly, and the rest point of the
ball corresponds to the final image. The fact that the ball moves continuously

The Attractor of the
MRCM

Bowls
Bowls with one and two dishes (at-
tractors).
=
TRgE
1 2

Figure 5.2
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Experiments Need
Theoretical Support

with time, while our machine operates in discrete steps, is not an essential
difference. The point is that the ball in the bowl provides a metaphor for a
dynamical system with only one attractor. The right-hand image in figure 5.2
shows a situation with two different attractors. There the final development
depends on where we start.

Is the MRCM more like a bowl with one dish or like a bowl with two or
more dishes? And, how does the answer depend on the setting of the control
dials? In other words, can it be that with one setting of the dials, the MRCM has
one attractor, while there are several attractors with another setting? These are
typical questions for modern mathematics, questions typical for a field called
dynamical systems theory, which provides the framework for discussing chaos
as well as the generation of fractals.

There are two ways to answer such a question. If we are lucky, we will
be able to find a general principle in mathematics which is applicable and
gives an answer. If that is not the case, we can either try to find a new theory,
or if that turns out to be too hard at the moment, we can try to gain insight
into the situation by carefully controlled experiments. It is quite clear that
experiments alone will not be satisfactory in many cases. Often we do not
know how the bowl is shaped. Then, if we find, for example, that for all tested
initial positions, we always arrive at the same rest point, what does that tell
us? Not much. We still could be in a situation with several rest points. That
is to say, that quite by accident, the tested initial positions were not taken
sufficiently arbitrarily.

In other words, finding that our MRCM seems to always run towards the
same final image is a wonderful experimental discovery, but it needs theoretical
support. It turns out that using some general mathematical principles and
results developed by Felix Hausdorff and Stefan Banach, we can in fact show
that any MRCM always has a unique final image as an attractor, and that this
final image is invariant under the iteration of the MRCM. This is Hutchinson’s
beautiful and fundamental contribution to fractal theory. When we say ‘any
MRCM’ here, we mean that the number and design of the lens systems may
change in the MRCM. The only property which must be satisfied to have
Hutchinson’s result is that each lens system contracts images.
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5.2 Composing Simple Transformations

The Multiple Reduction Copy Machine is based on a collection of contrac-
tions. The term contraction means, roughly speaking, that points are moved
closer together when one contraction is applied. Of course, similarity transfor-
mations (compare section 3.1) describing reduction by lenses are contractions.
But we may also use transformations which reduce by different factors in dif-
ferent directions. For example, a transformation which reduces by one factor,
say 1/3,horizontally and by adifferent factor, say 1/2, vertically is also allowed
(see, for example, the devil’s staircase in section 4.5). Note that a similarity
transformation maintains angles unchanged, while more general contractions
may not.

We may also take transformations of the latter kind combined with a shear-
ing and/or rotation, and/or reflection. Figure 5.3 illustrates some admissible
‘lens systems’ for our MRCM. Mathematically, these are described as affine
linear transformations of the plane.

Transformations of the

MRCM

Admissible Transformations

. . . scale

Transformations with scaling, shear-

ing, reflection, rotation and transla-

tion (not shown) are admissible in an

MRCM.

- e
—»>

rotate reflect

Figure 5.3

shear

Affine Linear Transformations The lens systems of our MRCMs can be described by affine linear
transformations of the plane. Talking about a plane means that we fix a
coordinate system, an z-axis, and a y-axis. Relative to that coordinate
system every point P in the plane can be written as a pair (z,y).
Sometimes we write P = (x,y). In this way, points can be added
together and can be multiplied by real numbers: if P, = (xl,yl) and

P = (:vg,yg),then
P+ Py = (z1+ 22,51 +¥2)
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Sum and Multiplication with
Scalar

i (Lefty Two points (x1,y1) and

¥ B , (z2,y2) are added: (z1,31) +

H (x2,92) = (21 + z2,y1 + y2).

1] S ’ (Right) A point is multiplied by a
i i number: s - (z,y) = (sz, sy).

Figure 54

and
sP = (sz, sy).

A linear mapping F is a transformation which associates with every
point P in the plane a point F(P) such that

F(P1 + Pz) = F(Pl) -+ F(P2)
for all points Py and P» and
F(sP) = sF(P)

for any real numbersand all points P. A linear transformation F can
be represented with respect to the given coordinate frame by a matrix

a b
c d
where, if P = (x,y) and F(P) = (u,v), then

u = azr + by,
v = cx +dy.

In otherwords, a linear transformation is determined by four coefficients
a, b, ¢, and d. There are special representations which help us to
discuss contractions more conveniently. To this end we write the four
coefficients in our matrix as

( rcos¢ —ssiny )

rsin ¢ S Cos P
Such a representation is always possible. Just set
r=Vaita
and

¢ = arccos

a
Va2 +C2
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y
d+f w(B)
F(P,)
P w(P )
k2 c+f !
F(R)

P f '

1

1 x e b+e a+e

Figure 5.5 : The affine transformation described by six numbers a,b,c,d.e, f is
applied to two points P, = (1,0) and P, = (0, 1).

to obtain r and ¢. Similar formulas hold for s and . In this way it is
easier to discuss reductions, rotations and reflections. For example:

es =17 0<7r <1l and ¥ = ¢ fixes a mapping which reduces
by a factor of  and simultaneously rotates by the angle ¢ counter-
clockwise (the mapping is just a reduction, if ¢ = 0 ).

es=7,0<r<1,¢=mand ¢ = 0fixes a mapping which reduces
by a factor of » and simultaneously reflects with respect to the y-axis.

er=qg,ands=b0<a<1,0<b< 1 and d =1 = Ofixesa
mapping which reduces by a factor of a in z-direction and by a factor
of b in y-direction.

Affine linear mappings are simply the composition of a linear map-
ping together with a translation. In other words, if F is linear and Q is
a point, then the new mapping w(P) = F(P) + @, where P is any
point in the plane, is said to be affine linear. Affine linear mappings
allow us to describe contractions which involve positioning in the plane
(i.e., the translation by Q). Since F is given by a matrix and Q is given
by a pair of coordinates, say (e, f), an affine linear mapping w is given
by six numbers,

/)
f

a b
c d

and if P = (x,y) and w(P) = (u,v) then

u = ar+ by +e,
v =cr+dy+ f.

Another notation for the same equations is also sometimes used in this
text,

w(z,y) = (az + by + e,cx + dy + f).

In the discussion of iterated function systems, it is crucial to study
the objects which are left invariant under iteration of an IFS. Now, given
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an affine linear mapping w, one can ask which points are left invariant
underw? This is an exercise with a system of linear equations. Indeed,
w(P) = P means

i

z ar + by + e,
y =cr+dy+f.

Solving that system of equations yields exactly one solution, as long
as the determinant (a — 1)(d — 1) — be # 0. This point P = (x,y) is
called the fixed point of w. Its coordinates are

_ —e(d—1)+bf
 (a=-1)({d-1)-bc’
—fla—1)+ce

Y= la=Dld-1)—bc

The First Step: Already the first application of the MRCM to a given image will usually
Blueprint of MRCM reveal its internal affine linear contractions. This could be called the blueprint
of the machine. Note, that it is necessary to select an initial image with suf-
ficient structure in order to uniquely identify the transformations. Otherwise

rotate & rotate & scale
rotate scale & reflect
L = T o

Unfolding the Blueprint

We consider three transformations
(see column headings) and four ini-
tial images (left column). The first
two images obviously are not suit-
able to fully unfold the blueprint of
the machine. They cannot detect the
reflection in the last transformation.

Figure 5.6



224 5  Encoding Images by Simple Transformations

one cannot safely detect some of the possible rotations and reflections. Figure
S5.61llustrates this problem with three transformations. Inthe following images
in this chapter we typically use a unit square [0,1] x [0,1] with an inscribed
letter ‘L’ in the top left corner as an initial image to unfold the blueprint.

The lens systems of an MRCM are described by a set of affine transfor-
mations wy,ws,...,wy. For a given initial image A, small affine copies
wy(A),wa(A),...,wn(A) are produced. Finally, the machine overlays all
these copies into one new image, the output W(A) of the machine:

W(A) = wi (A Uwa(A)U - Uwn(A).

W is called the Hutchinson operator. Running the MRCM in feedback Iterated Function
mode thus corresponds to iterating the operator W. This is the essence of a System
deterministic iterated function system (IFS). Starting with some initial image
Ag, we obtain Ay = W (Ay), A2 = W(A;), and so on. Figures 5.7 and 5.8
show the MRCM feedback system and its blueprint for the Sierpinski gasket

(3 transformations).
& il

w, (A) U wy(A) Uwy(A)

MRCM Feedback System

Figure 5.7

First MRCM Blueprint

Blueprint of an MRCM using a unit 1l| E‘
square with an inscribed letter L’ in i

the top leftcorner as an initial image.
The purpose of the outline of the ini-
tial image on the output on the right !ll Ill
is to allow the identification of the
relative positioning of the images.

initial image stage 1

Figure 5.8
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Let wy,ws,...,wy be N contractions of the plane (we will carefull§
discuss this term a little bit later). Now we define a new mapping — the
Hutchinson operator — as follows: let A be any subset of the plane.
Here we think of A as an image. Then the collage obtained by applying
the N contractions to A and assembling the results can be expressed
by the collage mapping:

W(A) = w1 (A) Uwe(A)U--- Uwpy(A). (5.1)

The Hutchinson operator turns the repeated application of the meta-
phoric MRCM into a dynamical system: an IFS. Let Ag be an initial set
(image). Then we obtain

App1 = W(Ap),k=0,1,2,...,

a sequence of sets (images), by repeatedly applying W. An IFS gen-
erates a sequence which tends towards a final image A, which we
call the attractor of the IFS (or MRCM), and which is left invariant by
the IFS. In terms of W this means that

W(Aw) = Ao

We say that A is a fixed point of W. Now how do we express that A,,
tends towards A..? How can we make the term contraction precise?
Is Ay a unique attractor? We will find answers to these questions in
this chapter.

IFS and the Hutchinson
Operator

Sierpinski Gasket Variation

IFS with three similarity transforma-
tions with scaling factor 1/2.

Figure 5.9

What happens if we change the transformations or, in other words, if we

play with the dials of the machine (i.e., if one changes the number of lenses, or

changes their contraction properties, or assembles the individually contracted

images in a different configuration)? In the following figures we show the

®Being more mathematically technical, we allow A to be any compact set in the plane. Compactness means that A is bounded
and that A contains all its limit points, i.e., for any sequence of points from A with a cluster point, we have that the cluster point
also belongs to A. The open unit disk of all points in the plane with a distance less than 1 from the origin is not a compact set, but

the closed unit disk of all points with a distance not exceeding 1 is compact.
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The Twin Christmas Tree _ 5
Another IFS with three similarity ll ‘ ‘é"
transformations with scaling factor #ﬁb
112, ‘ 4#.&. 4 4
-;n ‘g.
= i &
=

| ¥ ¥
Figure 5.10

A Dragon With Threefold
Symmetry [—

The white lines are inserted only to
show that the figure can be made up =
from three parts similar to the whole.

Figure 5.11

results of some IFSs with different settings: the blueprint and the attractor.
The blueprint is represented in a single drawing: the dotted square is for the
initial image, and the solid-line polygons represent the contractions.

Our first example is a small modification of the IFS which generates the
Sierpinski gasket (see figure 5.9). It consists of three transformations, each of
which scales by a factor of 1/2 and translates as shown in the blueprint.

We are tempted to conjecture that all IFSs of three transformations that
scale by 1/2 produce something very similar to the Sierpinski gasket. But this
is far from the truth. In figure 5.10 we try another such IFS which differs from
the original one for the Sierpinski gasket only by the addition of rotations. The
lower right transformation rotates 90 degrees clockwise, while the lower left
rotates by 90 degrees counter-clockwise. The result, called the twin Christmas
tree, is clearly different from the Sierpinski gasket.

Now we start to also change the scaling factors of the transformations.
In figure 5.11 we have chosen the factor of s = 1/+/3 for all three trans-
formations. Moreover, a clockwise rotation by 90 degrees is also included
in each transformation. The result is a two-dimensional object with a fractal
boundary: a type of dragon with threefold symmetry. It is invariant under a
rotation of 120 degrees. It would be a good exercise at this point to compute
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FET

ti L

The Cantor Maze

IFS with three transformations, one
of which is a similarity. The attractor
is related to the Cantor set.

Figure 5.12

IFS for a Twig

IFS with three affine transformations
(only one similarity).

Figure 5.13

Crystal with Four Similarity
Transformations

Figure 5.14

the self-similarity dimension of the attractor using the techniques from the last

chapter.

So far we have made use of only similarity transformations. In figure 5.12
there is only one similarity (which scales by 1/3) and two other transformations,
which are rotations followed by a horizontal scaling by 1/3 and a reflection

in one of the two cases.

The result is a sort of maze, for which we have
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Crystal with Five
Transformations

IFS with five similarity transforma-
tions. Can you see Koch curves in
the attractor?

Figure 5.15

A Tree

The attractor of an MRCM with five
transformations can even resemble
the image of a tree (the attractor is
shown twice as large as the blueprint
indicates).

Figure 5.16
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reason to introduce the name Cantor maze. The Cantor set is woven into the
construction in all its details; all points of the cross product of two Cantor sets
are connected in a systematic fashion.

Here is our last example of an MRCM with only three transformations
(see figure 5.13). The transformations involve rotations; some have different
horizontal and vertical scaling factors; and one involves even a shear. What

we get is very familiar: a nice twig.

We continue with two examples with more than three transformations
(figures 5.14 and 5.15). All transformations are similarities with only scaling
and translation. Only one transformation in figure 5.14 includes an additional
rotation. These amazingly simple constructions already reveal quite complex
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initial image

IFS Encodings of Triangle,
L Square, and Circle
L L
1
L L
L L
L
i1
stage 1
Figure 5.17

Fractal Geometry
Extends Classical
Geometry

and beautiful structures reminiscent of ice crystals.

Finally, let us close our little gallery by a surprisingly realistic drawing
of a tree. Can you believe that even this image is a simple IFS attractor? In
fact, it is encoded by just five affine transformations (see figure 5.16). This
example convincingly demonstrates the capabilities of IFSs in drawing fractal
images.

Given an arbitrarily designed MRCM, what is the final image (its attractor)
which it will generate? Will it always be a fractal? Certainly not. Many objects
of classical geometry can be obtained as attractors of IFSs as well. But often
this way of representation is neither more enlightening nor simpler than the
classical description. We illustrate in figure 5.17 how the areas of a square and
a triangle can be obtained as IFS attractors. Representations of a plain circle,
however, remain somewhat unsatisfactory using IFSs; only approximations
are possible.
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5.3 Relatives of the Sierpinski Gasket

We have seen already quite impressively how rich and varied the patterns and
structures are that can be obtained by MRCMs. In this section we want to
explore some close relatives of the Sierpinski gasket or rather of the skewed
variation of the gasket shown in figure 5.9. What do we mean by relatives?
The blueprint of the Sierpinski gasket was given by three contractions reducing
an initial square as laid out in figure 5.18.

Blueprint for Relatives
The blueprint determines an MRCM Wy
only up to the eight symmetry trans-
formations of a square.
i "
initial image stage 1
L =|[ ] | = |
Lo |
Figure 5.18 PSSR | Dol IS [ (NRES. | ORI | [ AN ) S e | foce e i

There are several possibilities to transform a square into a square by a
linear transformation which involve rotations and reflections. Our blueprint
is not specific in this respect. In other words, it describes a whole family of
MRCMs. Each choice determines an MRCM of this family. So far we have
only seen the one producing the Sierpinski gasket. Before we introduce the
other members let us define a kind of alphabet which enables us to give names
to the different family members. First we set

vi(z,y) = (2/2,9/2),
Ug(.’l),y) = ((‘T+1)/2’y/2),
’Ug(l’,y) = ($/2,(y+ 1)/2)

These are three contractions which reduce an initial square by a factor of
1/2 and position the resulting square appropriately. Note, that the choice
wy = v, wy = v, and wy = vz provides the MRCM we already have
seen. Next we specify the eight symmetry transformations of a square, i.e.,
the fourrotations dy, . . . , d3 and the four reflections dy, . . ., d7. For example,
dy is the counterclockwise rotation by 90 degrees, dy = d? is the rotation by
180 degrees, d, is the horizontal reflection, and dg is the reflection about the
diagonal. Figure 5.19 provides the definitions.

The Symmetries of a Square The eight symmetries of a square dj, . . . , d7 form an elementary exam-
ple of a finite group G. Being a group means that there is a composition
‘o’ of its elements such di o d; € G (dy follows d,) for all pairs dy, d;
which satisfies:
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d, dy=d

1 2 3 3 1 2
2 .;__, 0 ot

ds=diod, dg=d,od,

(1) There is a neutral element e € G such that di o ¢ = dy, and
eody = dy, for any di, € G.

(2) Forany di € G there is an inverse element d; € G such that
drd; = e.

In our example the neutral element is e = do. The composition
is the usual composition of transformations. The composition table
establishes the group structure.

~Noog k=20

SN ok, ON =2 OO0
PO OWN ==
DN =2 O WM
O kONN =0 WW
- WNOoO OO SN AR
W =20 MmNk O00
NOW-=01 s 0®
O N = W OO N~

Table 5.20 : The results of the composition d. © d;, 8.9., d4 © ds = ds.

There is another useful way of looking at the transformation which
is revealed when labelling the vertices of the square (counterclockwise)
from O to 3. Then a symmetry transformation is given by a permutation
of the four elements. The group G contains a subgroup given by the
four rotations. Since dg and d3 can be expressed as compositions of
d; this subgroup is called cyclic. Note that the elements ds, dg, and
d7 can be expressed by the compositions of d; and d4 alone (see
figure 5.19).

Symmetry Transformations of
the Square

The result of the transformations dg
through d7 applied to a square with
labeled vertices and inscribed ‘L’.

Figure 5.19
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Figure 5.21 : The first 80 variations for MRCMs with blueprint 5.18.
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Relatives of the Sierpinski Gasket

5.3
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Figure 5.22 : The next 80 variations for MRCMs with blueprint 5.18.
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Figure 5.23 : The last 64 variations for MRCMs with blueprint 5.18.

Now we can describe the alphabet for our family. A family member is
specified by a triplet wy, wy, w3, where each w; is given by

w; = v;dy,
where £k =0,1,...,7and i = 1,2, 3. In other words, there are eight choices
of di’s for each w;, which makes altogether 83 = 512 different triplets

wy, Wa, w3, each one describing a specific MRCM.
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Let us now look at the family picture of all 512 MRCMs. Figures 5.21-
5.23 show 224 of these close relatives of the Sierpinski gasket. Where are the
remaining images? First note that none of the configurations are symmetric
with respect to the diagonal. Therefore, if Ao represents one of the images;
then the image which is obtained by reflection at the diagonal, i.e., dg (Ao ),
should be another member of the family of the 512. Indeed, if the triplet
v1dr, vad,, v3dy generates Ao, then vid;., vady, v3d,, (where d), = dgdids)
is the corresponding triplet of contractions that generates dg(Aq).” Figure
5.24 shows an example of such a pair of twins. This makes 2 x 224 = 448
nonsymmetric images.

Symmetric Counterparts

One example chosen from the 224
images of figures 5.21-5.23 and its
symmetric counterpart.

Figure 5.24

Where are the remaining 64 images? It turns out that there are eight more
images which come in multiplicities of eight and which are symmetric with
respect to the diagonal. Figure 5.25 shows these eight images together with
their equivalent MRCMs.

Let us explain why there are exactly eight symmetric images which occur
with multiplicity eight. Our first observation is that each of the images under
consideration has to be symmetric with respect to the diagonal. That is, if Ao
is one of them then dg(Ao) = Aco. Figure 5.26 shows an image (top) that
has this symmetry. The key of understanding the multiplicity is in monitoring
the black subsquare of the upper right corner.

First note, that for wy we can only choose {v1dg, v1ds} and {v1d2, v1d7}.
Other transformations v;dy would turn the black square off the diagonal and
thus break the symmetry. Finally we need to discuss which choices are ad-
missible for wy and ws. Clearly, once we choose wq, then we must choose w3
suitably in order to preserve the symmetry (see figure 5.27). There are four
positions of the black square which are specified by the four pairs of symmetry
transformations:

{do,ds}, {d1,ds}, {d2,d7}, {d3,da}.

"Note that Aee = v1dr{Acc) U v2ds(Acc) U v3dt(Anc) implies de(Acc) = v1dedr(Asc) U v2dpdt(Aco) U
v3deds{Aoc) = v1dedrds(ds{Acc)) U vadsdids(de{Aco)) U vadsdsde(ds(Axc)).
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Figure 5.25 : There are eight different symmetric attractors. Each one can be encoded by eight different sets of
transformations.

Admissible Transformations

A symmetric image (top) is trans- 1
formed by wi. The two left config- |- !

urations yield two pairs of choices .. |
for wi, namely, dovi,dgv1 and |
dov1,d7vy. The right two choices
yield configurations which are not
symmetric with respect to the diag-
onal.

Figure 5.26

Thus if we pick wg = vgody, with d, from one of these pairs, say dy € {d,., ds},
then we have to choose wg = vzdsd,- or w3 = vsdeds. Using the composition
table we find the admissible pairs for we and ws, which are illustrated in figure
5.27:

wo = vy ody, dp € {do,ds}, wy =vzody, dy € {do,ds},
Wy =vgody, di € {dl,d5}, W3 = VU3 Odl, d; € {d3,d4},
=g od, dp € {dz,d7}, W3 = U3 ody, d; € {dg,d7},
wy = vy o dy, di € {d3,ds}, w3 =v3od, di € {dy,ds}.

§
!

In summary, we have 2 x 2 x 2 choices for each configuration in figure 5.27
and that makes 8 x 8 = 64 different MRCMs with multiplicity eight.



5.3  Relatives of the Sierpinski Gasket

237

dy.dg

d, ds

Transformations for
d,d,

Symmetric Attractors

These 64 MRCMs (each icon rep-
resents eight MRCMs) generate the
eight symmetric images of our fam-

ily. The order of the icons corre-

" dgdg d,d
e T sponds to the images in figure 5.25.

Fwrwrw:

Figure 5.28 :

Figure 5.27

Analyzing the 224 + 8 = 232 different images we find an amazing variety
of patterns and forms, all of which are close relatives of the Sierpinski gasket.
Some are closer than others. For some of them it is hard to believe that they
actually are the result of such a simple MRCM or an MRCM at all. The
mathematical properties in the family are quite interesting as well. Some
of the images are connected (one piece); others are not. Those which are
not connected are in fact totally disconnected (something like a Cantor set).
Those which are connected again split into two classes. One class is the type
of patterns which are simply connected (no holes) and the other consists of
patterns with infinitely many holes like the Sierpinski gasket itself. Figure
5.28 shows examples of these three cases.
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Our family can be divided into three cases: simply connected, connected (but not simply connected),
totally disconnected.
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5.4 Classical Fractals by IFSs

The concept of Iterated Function Systems allows us to make the construction of
classical fractals much more transparent. They can be obtained as attractors of
appropriate IFSs. In other words, the question of their existence as discussed
in chapter 3 (we discussed the problem in detail for the Koch curve) can finally
be settled by showing that for a given IFS there is a unique attractor. This
will be done in the course of this chapter. But IFSs also allow us to better
understand the number theoretical characterizations of some classical fractals
like the Cantor set or the Sierpinski gasket.
You will recall the characterization of the Cantor set by ternaries: it is the Cantor Set

set of points of the unit interval which have a triadic expansion that does not
contain the digit 1 (see chapter 2). Now we look at an IFS with

1 11 12
wo(x):gx, wl(m):§$+§, w2(l‘)=§x+g.

Note, that this machine operates only on one variable (i.e., not in the plane).

stage0 ¢ sy

stage1 ¢ PE— ' :
ub(.’) wl(n “’z(”

stage2 | { ' " " '

wywy (D) wy(w, (D) wlwy(D) wywy(D) wyw (D) w (D) wylwy (D) wy(w, (D) wy(wy(D)

Figure 529 : First iteration stages of the triadic IFS. If wy is left out, the Cantor set is generated as the attractor.

Figure 5.29 shows the first stages of its iteration (using the unit interval as
initial image). The attractor of this machine is clearly the unit interval (again
and again, the unit interval is simply transformed into the unit interval). But
what would happen if we used only the two transformations wq and wy? In this
case we obviously would obtain the Cantor set as the attractor (the iteration
would correspond to the classical construction steps of the Cantor set: again
and again middle thirds would be left out).

Now observe that w transforms the unit interval to the interval [}, 2],
i.e., points with triadic expansion from 0.1 to 0.1222... = 0.12. In fact,
whenever w; is involved in the iteration of the IFS this leads to points with
an expansion that contains the digit 1. In other words, leaving out everything
which comes from w; just amounts to the ternary description of the Cantor
set.

Let us now turn to the Sierpinski gasket (or to its variation as already Sierpinski Gasket
shown in figure 5.9). Now we look at the IFS that is given by four simi-
larity transformations transforming the unit square Q into its four congruent
subsquares (see figure 5.30).
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Four Contractions

Contractions transforming the unit
square into its four congruent sub-
squares.

Figure 5.30

First Stages

The first two stages of the IFS. Ob-
serve that the generated subsquares
can be identified by a binary coordi-
nate system.

Figure 5.31

It is convenient to label these transformations in binary form (i.e., 00,01,
10 and 11 instead of 0,1,2,3):

woo(z,y) =

w10 (33, y)

1
(E,i
T+

),

wo1(, y)

%a %y)» ’l.Ull(x,y)

- (
— (

(NI

Y+ s5),
T+ 35,39+ %)

B[+t

T,

[SIL N SIE

Using all the four similarity transformations in an IFS will generate the unit
square as an attractor. Figure 5.31 shows the first stages of the iteration of
this machine. Note that we use a binary coordinate system to identify the
subsquares which are generated in each step. The binary coordinate system
provides a very convenient way to do bookkeeping.

For example, in the first stage, wg; has transformed the unit square Q into
the subsquare wp1 (@) at (0,1), wy; into the subsquare at (1,1), and so on. In
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the second stage we find, for example, the square at (10, 11) is w1 {wo1{@))
(i.e., first apply w1 to Q and then wy; to the result). Here is another example:
wio(woo(w11(@))) would produce the square in the third stage at (101,001).
Do you see the labelling system? In the composition w1g(woo{w11(@))), take
the first digits from left to right, i.e., 101. This gives the binary z-coordinate
of the subsquare. Then take the second digits in the composition from left to
right, i.e., 001; this gives the y-coordinate.

We know already that the attractor of the IFS given by wqg, wo1 and wyg
will be the Sierpinski gasket. In other words, if we leave out everything in
the unit square IFS which comes from wy1, we will also get the Sierpinski
gasket. Now the binary bookkeeping pays off. Given any stage k the 4% little
subsquares are identified by pairs of binary coordinates (with k digits). How
can we recover whether wy; was involved in the production of a subsquare
by the IFS? We just take the two binary coordinates which identify the little
square and write them on top of each other, for example, (100111,010000)
and (100111,001100):

100111 100111
010000 001100
NO YES

If we find the digit 1 simultaneously in corresponding places, then wy; was
involved, otherwise not. Thus, omitting all these squares step by step will
generate the Sierpinski gasket from the unit square.® This is in the same spirit
as in the ternary description of the Cantor set. Moreover, we note that we have
just built the interface to the geometrical patterns in Pascal’s triangle, because
our omission criterion here is exactly Kummer’s number theoretical criterion
for even binomial coefficients. We will explore this marvellous relation more
in chapter 8.

The Sierpinski carpet (see figure 2.56) has a very similar number theoretical
description. Just start with the unit square and subdivide into nine congruent
squares. For the appropriate IFS we use the transformations which transform
the unit square into these subsquares; see figure 5.32 (again no rotations or
reflections are allowed).

This time we label the transformations using ternary numbers like
Woo, Wo1, Wo2, W10, . - . , W22. Accordingly, each square in the kth stage is
identified by a pair of ternary coordinates (with k digits). In the limit, each
point in the unit square is described by a pair of infinite ternary digit strings
like (011201..., 210201...). Now the Sierpinski carpet is obtained by
omitting everything which comes from the transformation w;;. This means
that we keep only those points in the unit square which admit a description by
a pair of ternary numbers without the digit 1, or if the digit 1 appears in one of
the coordinates, it must not appear at the same place in the other coordinate.
For example, we keep (110,001). Also (2012, 1010) belongs to the carpet,

Sierpinski Carpet

$This explains the binary characterization of the Sierpinski gasket which we have used in chapter 3, page 169, for the discussion

of self-similarity.
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Nine Contractions

The contractions transform the unit

W ! . :
02 12 22 square 1nto nine congruent sub-

squares that can be conveniently

M W W,

identified by a triadic coordinate

system.
01 1 21

00 {0 20

Figure 5.32

because it is equal to (2020, 1010). But we omit (2010, 1010), and so on. We
remark that in this precise sense the Sierpinski carpet is the logical extension
of the Cantor set into the plane.

In this book we have presented a gallery of classical fractals. This gallery
has had no essential addition until very recently. B. Mandelbrot opened the
doors wide to many new rooms in the gallery and added some potentially
eternal masterpieces — like the Mandelbrot set — to it. But there are also two
other creations or discoveries which have given current research significant
momentum. One is the first strange attractor discovered by E. Lorenz at MIT
in 1962, and the second is what we would like to call Barnsley’s fern. The
Mandelbrot set, Lorenz attractor, and Barnsley’s fern have each opened a new
and separate division in the gallery of mathematical monsters. Of all these,
Barnsley’s fern belongs to the subject of this chapter.

Barnsley was able to encode the image in figure 5.34 with only four lens
systems. Figure 5.35 shows the design of his MRCM by means of its applica-
tion to an initial rectangular image. Note that contraction number 3 involves a
reflection. Also, contraction number 4 is obviously not a similarity transfor-
mation; it contracts the rectangle to a mere line segment. The attractor which
is generated by the IFS will not be self-similar in the precise mathematical

Translations | Rotations Scalings Barnsley Fern

€

f ol P T s Transformations

BOWoR —

0.0
00
00
00

1.6 -25 25085 0385
1.6 49 49 | 03 034
044 | 120 -50 | 03 0.37
00 0 0 00 0.16

The angles are given in degrees.

Table 5.33
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Barnsley’s Fern

Barnsley’s fern generated by an
MRCM with only four lens systems.

Figure 5.34

meaning of the word. The original transformations are given in table 5.33.°
The importance of Barnsley’s fern to the development of the subject is that
his image looks like a natural fern, but lies in the same mathematical category
of constructions as the Sierpinski gasket, the Koch curve, and the Cantor
set. In other words, that category not only contains extreme mathematical
monsters which seem very distant from nature, but it also includes structures
which are related to natural formations and which are obtained by only slight
modifications of the monsters. In a sense, the fern is obtained by shaking an

M. F. Barnsley, Fractal Modelling of Real World Images, in: The Science of Fractal Images, H.-O. Peitgen and D. Saupe
(eds.), Springer-Verlag, New York, 1988, page 241.
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I

A

initial image

Blueprint of Barnsley’s Fern

The small triangle in the initial im-
age and its first copy on the right in-
dicate where the ‘stem’ of the fern is
attached to the rest of the leaf.

Figure 5.35

MRCM which generates the Koch curve so that the lens systems alter their
positions and contraction factors (see figure 5.36).

Let us now turn to another aspect of our concept of MRCM. The message
which is expressed by the image of the fern is very impressive. Something
as complicated and structured as a fern seems to have a lot of information
content. But as figure 5.35 demonstrates, the information content from the
point of view of IFSs is extremely small. This observation suggests viewing
the IFS as a tool for coding and compressing images. In the following section
we will discuss some basic ideas. A detailed technical discussion can be found

in Fisher's appendix on image compression.

3,

Koch Curve Transformed into
the Fern

By changing the parameters of the
transformations for the Koch curve
continuously to those of the fern,
the generated image smoothly trans-
forms from one fractal into the other.
The lower nine images of the fig-
ure show some intermediate stages
of this metamorphosis.

Figure 5.36
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5.5 Image Encoding by IFSs

Each of the images in our gallery is obtained by a very simple machine, the
blueprint of which is revealed by stage 1 in each experiment. How many
images are there which can be generated this way? The answer is obvious
— infinitely many. Any number and particular choice of lenses and their
position define a new image. In other words, we can think of the blueprint
of the MRCM (i.e., the set of transformations which describe the IFS) as the
blueprint (or encoding) of an image. In figure 5.37 we have summarized this
interpretation using the twig-like structure. The transformations are:

a b C d e f

1| —0467 0.02 —-0.113 0015 0.4 04
2| 0387 043 043 —0.387 025 0.522
31 0441 —0.091 -0009 -0.322 0421 0.505

Let us summarize what we have learned so far. We have introduced a ma-
chine, called an MRCM, which is essentially an arrangement of lens systems
which contract images. The MRCM generates a dynamical system, an IFS.
That is, running the machine in a feedback environment leads to a sequence of
images Ao, A1, Az, ..., where Ag is an arbitrary initial image. The sequence
of images will lead to a final image, A, which is independent of the initial
image Ag. If we choose A, as the initial image, then nothing happens (i.e.,
the IFS leaves Ao, invariant). We say that A, is a fixed point of the IFS, or
that A is an attractor for the dynamical system. In this sense we can identify
the resulting attractor with the IFS. The mathematical description of the lens
systems of the machine is given by a set of affine linear transformations, each
one specified by six real numbers. We may interpret these data as a coding of
the final image Ay,. For the decoding we only need to run the machine with
any initial image. Eventually, the coded image A, will emerge.
However, in some cases the decoding using the IFS presents a serious prob- The Problem of
lem. For example, take Barnsley’s fern. Figure 5.38 shows the first stages of Decoding
the IFS. Obviously, even after 10 iterations we still have a long way to go to

Twig Blueprint

Encoding of a twig by three transfor-
mations.

Figure 5.37
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The First Iterates

Stage 5 and stage 10 of the fern copy
machine.

Figure 5.38

reach the complete fern. Thus, we are led to the general question: after how
many steps can one assume that the final image has been approximated suffi-
ciently well? To answer this we need to clarify what we mean by sufficiently
well. There are two criteria which seem to be reasonable.

The first would require that two successive iterations change so little that
the change is below graphic resolution. This compares very well to compu-
tational problems. A solution to a square root calculation, for example, is
accepted when the first 10 digits no longer change. The second criterion is
more practical and allows an a priori estimate of the number of necessary iter-
ations. This estimate derives from the following worst-case scenario. Recall
that the initial image may be completely arbitrary. At this point, however, let
us require that it covers the attractor. For example, it could be a sufficiently
large square. Since the final image is independent of the initial image, we
will not accept a given iteration as an approximation for the final image as
long as we still see contracted versions of the initial image in that iteration.
This is the case in figure 5.38. It is apparent that even after 10 iterations the
dynamical system is still far from the final image, the attractor. The reason is
that contraction number 1 (see figure 5.35) reduces by only a factor of 85%.
Therefore, in order to reduce the initial rectangle to a size below pixel size —
to the point at which the rectangular structure becomes unrecognizable — we
have to carry out at least N iterations, where N is estimated in the following
way. Assume that the initial rectangle is drawn on a 1000 x 1000 pixel screen
and covers 500 x 200 pixels. Then N approximately solves the equation

500 - 0.85™ = 1.

Thus, N = 39. In a straightforward implementation of the IFS one has to
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calculate and draw

4N+t
M=1+4+42+43+-~+4N=T

rectangles for N iterations. With N = 39 we compute the incredibly large
number M =~ 439 =~ 3 x 10%3. Even if we assume that our computer calculates
and draws a whopping million rectangles per second, then to see the final
image we would have to wait 3 X 107 seconds, which is about 1010 years,
which is a time span of the order of the estimated age of the universe. This
gives some flavor of the decoding problem. In chapter 6, however, we will
learn a very elementary and powerful decoding method which generates a
good approximation of the final image on a computer screen within seconds!
We will also modify the above inefficient algorithm to the point where it
will produce the fern (and other attractors) with the same precision and in a
reasonable time.

In order to make use of IFSs for image coding, one first has to solve another ~Encoding: The Inverse
crucial problem, namely, to construct a suitable MRCM for a given image. Problem
This is the inverse problem; encoding is inverse to decoding. Of course, we
cannot expect to be universally able to build an MRCM which produces exactly
the given image. However, approximations should be possible. We can make
these as close to the original as we desire, as explained next.

Assume we are given a black and white picture, digitized at a resolution
ofn x m pixels. This image can be exactly reproduced by an MRCM simply
by requiring that for every black pixel of the image, there exists a lens which
contracts the whole image to that particular pixel. Running the machine
just once starting out with any image will produce the prescribed black and
white pixel image. Naturally, this is not an efficient way to code an image
because for every black pixel we need to store one affine transformation.
However, the argument demonstrates that in principle it is possible to achieve
approximations of any desired accuracy. Thus, the problem is to find ways to
construct a better MRCM which does not need as many transformations but
still produces a good approximation. Several difficult questions are raised in
this context:

(1) How can the quality of an approximation be assessed? How do we quantify
differences between images?

(2) How can we identify suitable transformations?

(3) How can we minimize the necessary number of affine transformations?

(4) What is the appropriate class of images suitable for this approach?

Most of these questions have been intensively studied. The first fully
automated fractal image compression algorithm was given in Arnaud Jacquin’s
Ph.D. thesis in 1989 and later published in a journal.'’ Given an image, the
encoder finds a contractive affine image transformation (fractal transform) T
such that the fixed point of T is close to the given image. The clou is that

A. E. Jacquin, Image coding based on a fractal theory of iterated contractive image transformations, 1EEE Trans. Image
Processing, 1:18-30,1992.
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the transform does not operate on the entire image. Instead it copies only
scaled pieces of it to other locations. The decoding is as usual by iteration of
the fractal transform starting from an arbitrary image. Due to the contraction
mapping principle, that is to be discussed in the next section, the sequence of
iterates converges to the fixed point of 7. Jacquin’s original scheme showed
promising results. Since then, several researchers have improved the original
algorithm. In just 14 years after Jacquin’s development over 600 research
papers have appeared, which we have collected in a depository in the world
wide web."" In spite of the huge effort, fractal image encoding has not reached
the point where it can clearly outperform state-of-the-art algorithms based on
wavelets such as those that are in the recent JPEG2000 still image coding
standard.

"See the links on http://www.inf.uni-konstanz.de/cgip/.
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5.6 Foundation of IFS: The Contraction Mapping Principle

The image coding problem has led us to one of the central questions: how
images can be compared or what the distance between two images is. In fact,
this is crucial for the understanding of iterated function systems. Without an
answer to these questions we will not be able to precisely verify the conditions
under which the machine will produce a limiting image. Felix Hausdorff,
whom we have already mentioned as the man behind the mathematical foun-
dations of the concept of fractal dimension, proposed a method of determining
this distance which is now named after him — the Hausdorff distance. In-
troducing the Hausdorff distance (A, B) has two marvelous consequences.
First, we can now talk about the sequence of images A having the limit A, in
a very precise sense: Ao i8 the limit of the sequence Ag, Ay, Asg, ... provided
that the Hausdorff distance h(As, Ax) goes to 0 as k goes to co. Buteven
more importantly, Hutchinson showed that the operator W, which describes
the collage

W(A) =wi(A)Uwa(A) U Uwy(4)

is a contraction with respect to the Hausdorff distance. That is, there is a
constant ¢, with 0 < ¢ < 1, such that

h(W(A),W(B)) <c-h(A, B)

for all (compact) sets A and B in the plane. In establishing this fundamental
property, Hutchinson was able to inject into consideration one of the most
powerful and beautiful principles in mathematics — the contraction mapping
principle, which has a long history and owes its final formulation to the great
Polish mathematician Stefan Banach (1892-1945).

If the works and achievements of mathematicians could be patented, then
the contraction mapping principle would probably be among those with the
highest earnings up to now and for the future. Once he allowed himself a cer-
tain degree of abstraction, Banach understood that many individual and special
cases which floated in the work of earlier mathematicians can be subsumed
under one very brilliant principle. The result is nowadays a theorem in metric-
topology, a branch of mathematics which is basic for a great part of mod-
ern mathematics and is usually a topic reserved for students of an advanced
university-level mathematics courses. We will explain the core of Banach’s
ideas in a nonrigorous style.

Measuring Distance: The The Hausdorff distance determines the distance of images. It is based

Metric Space on the concept of distance of points to be explained here. Expressed
generally, the distance between points of a space X can be measured
by a function d : X x X — R. Here R denotes the real numbers and
the function d must have the properties that

(1) d(z,y) =0
@) d(x,y)=0ifandonlyifz =1y
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Figure 5.39 : Three methods of measuring distance in the plane (the lattice
distance, the Euclidean distance, the maximum norm distance) and the corre-
sponding unit sets (the set of points which have the distance 1 to the origin of
the coordinate system).

@) d(z,y) =dy,z)
@ d(z,y) <d(z,z)+ d(z,y) (triangle inequality),

hold for all z,y, 2 € X. We call such a mapping d a metric. A space
together with a metric is called a metric space. Some examples are
(see figure 5.39):

(1) For real numbers z and y we can set
d(z,y) = |z — y|.

(2) For points P = (z,y), @ = (u,v) in the plane we can define

da(P,Q) = /(z —u)? + (y — v)2.

This is the Euclidean metric.
(3) Another metric in the plane would be

oo(P, Q) = max{|z —ul, |y - v]}.

This is the maximum metric.
(4) A further metric illustrated in figure 5.39, the lattice metric, is given
by

di(P,Q) = |z —ul+y —v|.

The last metric d; on the list is sometimes also referred to as the
Manhattan metric, because it is the distance a cab driver in Manhattan
would have to drive to get from P to Q.
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Once we have a metric for a space X we can talk about limits of
sequences. Let xg,x1,Z2,...be a sequence of points from X and a
an element from X. Then a is the limit of the sequence provided

lim d(zk,a) = 0.
k—o0

In other words, forany € > 0 we can find a point z,, in the sequence
so that any point later in the sequence has distance to a less than €:

d(zg,a) <€, k>n.

In this case we say that the sequence converges to a. Often it is very
desirable to test the convergence of a sequence without knowledge
of the limit. This, however, works only if the underlying space X has
a special nature (i.e., it is a complete metric space). Then one may
discuss limits by monitoring the distance of consecutive points in the
sequence.

The space X is called a complete metric space if any Cauchy
sequence has a limit which belongs to X. More precisely, this means
the following: Let xg, 21, 2, ... be a given sequence of points in X.
It is a Cauchy sequence if for any given number £ > 0 we can find a
point Z,, in the sequence so that any two points later in the sequence
have a distance less than ¢:

d(xi,mj) < g, 7,,] > m.

Then the limit of the sequence exists and is a point of X. Two examples
are:

(1) The set of rational numbers is not complete. There are Cauchy se-
quences of rational numbers whose limits exist but are not rational
numbers. An example of such a sequence is given by

=1
Tn =Zp
k=1

This sequence of rational numbers converges to the irrational limit

2
/6.
(2) The plane R? is complete with respect to any of the metrics, di,
da, O dyg.
In chapter 1 we learned that a large variety of dynamic processes and The Environment of
phenomena can be seen from the point of view of a feedback system. A the Contraction
sequence of events ag, a1, a2, . .. is generated starting with an initial event ag, Mapping Principle

which can be chosen from a pool of admissible choices. As time elapses (as
n grows), the sequence can show all kinds of behavior. The central problem
of dynamical systems theory is to forecast the long-term behavior. Often that
behavior will not depend very much on the initial choice ag. That is exactly
the environment for the contraction mapping principle. It provides everything
which we can hope for to make a forecast. But having in mind the variety of
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The Result of the
Contraction Mapping
Principle

both wild and tame behavior which feedback systems can produce, it is clear
that the principle will select some subclass of feedback systems for which it
can be applied. Let us collect the two features which characterize this class:

(1) The Space. The objects — numbers, images, transformations, etc., which
we call a, — must belong to a set in which we can measure the distance
between any two of its elements, for example, the distance between x and
yis d{z,y). Furthermore, the set must be saturated in some sense. That
means, if an arbitrary sequence satisfies a special test which examines the
possible existence of a limit, then a limit exists and belongs to the set
(technically, the space is a complete metric space).

(2) The Mapping. The sequence of objects is obtained by a mapping, say
f. That means that for any initial object ag, a sequence ag, a1, as,.. . is
generated by an4+1 = f(an),n =0,1,2,... Furthermore, f is a contrac-
tion. That means that for any two elements of the space, say z and y, the
distance between f(z) and f(y) is always strictly less than the distance
between z and y.!?

For this class of feedback systems the contraction mapping principle gives
the following remarkable result:

(1) The Attractor. For any initial object ag the feedback system a,41 =
f(an) will always have a predictable long-term behavior. There is an
object @ (the limit of the feedback system) to which the system will go.
That limit object is the same no matter what the initial object ag is. We
call aso the unique attractor of the feedback system.

(2) The Invariance. The feedback system leaves a, invariant. In other
words, if we start with @, then ao, isreturned. ao is a fixed point of f,
ie, f@oo) = G0

(3) The Estimate. We can predict how fast the feedback system will arrive
close to ao, When it is started at ag. We only have to test the feedback loop
once on the initial object. That means, if we measure the distance between
ap and a1 = f(ag), we can already safely predict how often we have to
run the system to arrive near @Goo Within a prescribed accuracy. Moreover,
we can estimate the distance between ag and Qe -

A mapping f is a contraction of the metric space X, provided that there  The Attractor of a Contractive
is a constant ¢, 0 < ¢ < 1, such that forall z, y in X one has that Mapping

d(f(z), f(y)) < cd(z,y).

The constant c¢ is called the contraction factorfor f. Let ag,a1,az, ...
be a sequence of elements from a complete metric space X defined
by @nt+1 = f(an). The following holds true:

(1) There is a unique attractor e, = liMy, o0 Q.

2Technically, d(f(z), f y)) € ¢-d(z,y) withaconstant 0 < ¢ < 1.
y
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(2) axois invariant, f(do) = Goo.

(3) There is an a priori estimate for the distance from a,,to the attractor,

d(an, as) < cd(ag,a1)/(1 — ¢).

Let us explain the estimate in property (3). From the contraction

property of f we derive

a(f(a0), aco) = d(f(a0), f(ac)) < cd(ap, aco).

Applying the triangle inequality, we further obtain

d(ag,ax) < d(ao, f(ao)) +d(f(ao), aco)
< d(ao, f(ag)) + cd(ag, axo)

thus,
d
d(a(), aoo) S (a‘Oa f((l()))
1—-c¢
and likewise
d a’IL) an
d(an,aoo) S (—1_c+_1)

forall n = 0,1,2,... Finally, with

cd(an_1,an)
CQd(an—m An-_1)

d(an, An41 )

ARV

<
< *d(ag, ay)

we arrive at the result
Y3

d(an, too) < lc_

Cd(ao,al).

This allows us to predict n so that a,, is within a prescribed distance

to the limit.

We now examine the operation of an IFS and how it can be described by
means of the contraction mapping principle. To start we need to define the
distance between two images. For simplicity let us consider only black and
white images. Mathematically speaking an image is a compact set' in the
plane.

Given an image A, we introduce the £-collar of A, written A., which is
the set A together with all points in the plane which have a distance from A of
not more than € (see figure 5.40). Hausdorff measured the distance between
two (compact) sets A and B in the plane using e-collars. Formally, we write
h(A, B) for that distance. To determine its value we try to fit A into an e-
collar of B, and B into an e-collar of A. If we take € large enough, this will
be possible. The Hausdorff distance h(A, B) is just the smallest & such that
the e-collar A, absorbs B and the e-collar B, absorbs A.

The Hausdorff
Distance

13Technically, compactness for a set X in the plane means that it is bounded, i.e., it lies entirely within some sufficiently large

disk in the plane and that every convergent sequence of points from the set converges to a point from the set.
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The ¢-Collar

The e-collar of a set A in the plane.
Note that the e-collar of A includes
A and is not just a set of points close
to A, as the term ‘collar’ might sug-

gest.
Figure 5.40
In precise mathematical terms the definition of the Hausdorff distance Definition of the Hausdorff
is as follows. Let X be a complete metric space with metric d. Forany Distance

compact subset A of X and € > 0, define the e-collar of A by
Ac={r € X |d(z,y) <e forsome y € A}.

For any compact subsets A and B of X the Hausdorff distance is
h(A,B) =inf{e | A C B, and B C A.}.

According to Hausdorff the space of all compact subsets of X,
equipped with the Hausdorff distance, is another complete metric
space. This implies that the space of all compact subsets of X is a
suitable environment for the contraction mapping principle.

The Hutchinson
Operator

With this definition it follows that h{(A, B) = 0 when A is equal to B.
Also, if A is just a point and B is just a point, then h(A, B) is the distance
between A and B in the ordinary sense. Figure 5.41 illustrates that fact and
gives a few more examples useful for getting acquainted with the notion of
Hausdorff distance.

Let us now return to the state of affairs which Hutchinson obtained when
analyzing the operator W

W(A) = w1 (A) Uwa(A)U - Uwn(A),

where the transformations w;,¢ = 1, ..., N, are contractions with contraction
factors ¢;. Hutchinson was able to show that W is also a contraction, how-
ever, with respect to the Hausdorff distance. Thus, the contraction mapping
principle can be applied to the iteration of the Hutchinson operator W. Con-
sequently, whatever initial image is chosen to start the iteration of the IFS, for
example, Ag, the generated sequence

Ak+1 = W(Ak>’ k= 0,1,2,3,...

will tend towards a distinguished image, the attractor A of the IFS. Moreover,
this image is invariant:

W (Aso) = Aco.
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Four Examples of Hausdorff @ e e
Distance / /
To obtain the Hausdorff distance be- % a be

tween two planar sets A and B we
compute a. = inf{e | B C A.}
(left figures) and b, = inf{e | A C
B} (right figures). B barely fits (b)
into the ae-collar of A, and A
barely fits into the b.-collar of B.
The Hausdorff distance is the max-
imum of both values, h(A4,B) =
max{ac, be }. The sets A and B are
two points (top row), a disk and a
line segment (second row), a disk (c) S
and a large square (third row, here B ag

b. = 0), and two intersecting disks '
(bottom row).

Figure 5.41

A

This solves a central problem raised in chapter 3. The Koch curve, the Sier-
pinski gasket, etc., all seem to be objects in the plane, and there are convergent
processes for them, namely, the iteration of the corresponding Hutchinson op-
erators. But we could not prove that these fractals really exist and are not just
some impossible artifact of a self-referential scheme such as the assumption
of a barber who shaves all men who do not shave themselves — obviously a
falsehood. However, now, with Hutchinson and Hausdorff’sresults in hand,
we are sure that the limit object with the self-similarity property truly exists.

The contraction mapping principle even gives us something in addition
for free. Knowing the contraction factor ¢ of the Hutchinson operator W, we
can estimate how fast the IFS will produce the final image from just applying
the Hutchinson operator one time to Ap. Since the contraction factor ¢ of
W is determined by the contraction w; with the worst contraction factor ¢;,
i.e., ¢ = max{¢;}, the efficiency of the IFS is determined by this individual
contraction. This is the theoretical background of our experiments in figure
5.1 and the encoding of images by IFSs.
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Hutchinson applied the contraction mapping principle to the operator
W. The principle requires that the space in which W operates is com-
plete. The completeness of this space of compact subsets of a space
X, which itself is complete (e.g., the Euclidean plane), was already
known to Hausdorff. So it remained to show that the Hutchinson oper-
ator W is a contraction. Let us briefly illustrate the idea of the argument
with the example of two contractions w1 and wea with contraction fac-
tors ¢1,c2 < 1. We take any two compact sets A and B, and show
that the Hausdorff distance k(W (A), W (B)) between

W(A) = w1 (A) Uwy(4)
and
W(B) = wy(B) Uws(B)

is strictly less than the distance k{4, B) between A and B.

Compare figure 5.42 for the following. Let € be the Hausdorff dis-
tance between A and B, h(A, B) = ¢. Then B is in the e-collar of A,
B C A.. Applying thetransformations w; and ws yields

w1 (B) C wi(Ae) and wa(B) C wo(Ae).
From the contraction property of the two transformations it follows that

wi(Ae) C (cy - €)-collar of wy(A),
'LUQ(AE) C (02 -E)-CO"&I’ of 'wg(A).

Setting ¢ = max(c1, ¢cz) we obtain that both wy(B) and wq(B) are
contained in the (c - €)-collar of w; (A) Uwz(A). The same argument
applied to A and e-collar B, also yields that both w; (A) and w2 (A)

c-€ collar

Figure 5.42 : The Hausdorff distance between the sets A and B, ¢, shrinks
at least by the factor ¢ = max{c1,cz2) < 1 when the Hutchinson operator is
applied.

The Contractivity of the
Hutchinson Operator
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are contained in the (¢ - )-collar of wi(B) U wy(B). With that it is
clear from the definition that the Hausdorff distance h(W (A), W(B))
is less than ¢ - €. Thus, the Hutchinson operator W is a contraction
with contraction factor ¢ < 1. Therefore the worst contraction of the
transformations in the IFS determines the overall contraction factor of
the machine.

In summary, our experiments are bullion very firm ground and are not just
the results of some lucky or accidental choices. Hutchinson’s work lays the
ground for a whole new discussion of images and their encoding. But as we
have seen, there are still some open and very serious problems, for example,
the problem of decoding. We have seen that the fern can be encoded by an
IPS, but we have not yet given away the secret of how the image has been
obtained (i.e., how the fern has been decoded). In a sense this means that we
can lock up images into very tiny little boxes, which makes them invisible;
but we don’t yet know the keys needed to get them out again into the visible
world. What we need is some artist who unchains our encodings. But this is
the subject of the next chapter. On the other hand, there is the inverse problem,
the problem to find the encoding of a given image.

Fractal Dimension for IPS
Attractors

We have seen that an attractor A, generated by a simple IFS whose
contractions are similarities is self-similar. In this case, we can compute
the self-similarity dimension, provided the N contractions wy, ..., wy
have the property that w; (As) N wi(As) = B, forall 4,k with i #
k, and the w; are one-to-one. This type of attractor is said to be
totally disconnected. There is no overlapping of the small copies of the
attractor. If in addition, the contractions are reductions with the same
factor ¢, 0 < ¢ < 1, then the self-similarity dimension D, = d of the
attractor A, can be computed from the equation N¢® = 1. This is
the same as
log N
" logl/e’

Moreover, we can show that the self-similarity dimension is the same
as the box-counting dimension. Note, that the formula can be use-
less when there is substantial overlap of the contractions of the at-
tractor. To see this, consider the example of a square covered by
four reduced copies of it, each one reduced by a contraction factor
of, say, 3/4 (implying substantial overlap). Then the formula gives
D =log4/logd/3 > 2!

If we have N similarities with reduction factors ¢y, ..., ¢y, then
Hutchinson showed that we can still compute the fractal dimension
D, = d, by solving an equation which includes the special case where
¢y = ¢y = -+ = cn. He showed that

i
cftey+-+cy =1

Of course, in most cases one cannot solve this equation by hand for
the dimension d. Rather, a numerical procedure must be employed.
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The condition that the attractor must be totally disconnected for the
formula to hold can be relaxed somewhat." It is still true if the attractor
is just touching. An example of such a situation can be constructed in
a straightforward manner as follows. Consider the unit square [0, 1] x
[0, 1] and its regular square subdivision in @ X n cells (see figure 5.43
forn = 5). Weselect k of the n? subsquares and imagine an MRCM
with k contractions each one of which contracts the entire unit square
to one of the k subsquares. Thus, such a contraction involves a scaling
by the factor of 1/nand a translation by a vector of the form (i/n, j/n),
where ¢,j € {0,1,...,n — 1}. But note, that there may be in addition
a rotation by 0, 90, 180, or 270 degrees and also a reflection involved
(giving rise to eight variations). Thus, we may choose a contraction
from a pool of a total of 8n? possibilities. We have already seen some
examples of this form: the Cantor set, the Sierpinski gasket variation
(figure 5.9), the Sierpinski carpet (figure 2.56), and the square (figures
5.30 and 5.32). There will be many more in chapter 7.

Figure 5.43 : Schematic diagram of an IFS of five transformations with con-
traction factor 1 / n=1 / 5. The fractal dimension of the corresponding attractor
islog5/log b = 1.

For each IFS of this form with k contractions which transform
the unit square to one of its n? subsquares, the self-similarity or
box-counting dimension is given by log k/logn. Indeed, to verify the
formula for the box-counting dimension we just have to choose grids
of mesh size s = 1/n, s = 1/n%, s = 1/n3, ... Then the number
N(1/p") of boxes which contain some portion of the attractor will
be exactly k”. In other words D = lim,_, log(k")/log(n") =
log k/ log n.

14See]. Hutchinson, Fractals and self-similarity, Indiana University Journal of Mathematics 30 (1981) 713-747, and G. Edgar,
Measures, Topology and Fractal Geometry, Springer-Verlag, New York, 1990.
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5.7 Choosing the Right Metric

In the last section we mentioned several possible definitions of a distance of
points in the plane. The Hausdorff distance between images is also affected by
the choice of that distance. So it is no surprise, and in fact important, to note
thatthe contraction mapping principle also depends on the choice of distance.

Let us recall the methods of measuring distance in the plane discussed in Dependence on the

the last section. For example, if P and Q are two points we can measure the Distance Notion
Euclidean distance dg (this is the length of a straight-line segment between P
and Q), the lattice distance d; (this is the sum of the length of two horizontal
and vertical line segments which connect P and Q), or the maximum norm
distance d, (see figure 5.39). These are only three of a great many possible
definitions. It is interesting to note the various geometrical shapes that are
given by the sets of points that have a distance less than or equal to 1 from the
origin. Naturally these shapes depend on the metric. Forthe Euclidean metric
we obtain the unit disk, and for the maximum metric we get the unit square.
But even more important for our purposes is the fact that it also depends on
the metric whether or not a given transformation is a contraction. It seems
counter-intuitive that a transformation may be a contraction in one case but
not with respect to another metric.

The Metric Determines It is important to note that everything depends on the choice of the

Contractiveness: An Example metric. A given transformation may be a contraction with respect to
one metric, but not a contraction with respect to another one. For
example, consider the map w which is given by the matrix

0

0
which defines a rotation by 45 degrees, a scaling by 0.551/2 = 0.778,
and no translation (see figure 5.44). The transformation w is a con-
traction for the metric dy but not with respect to dy or d.

To see the argument let us fix the point P = (0, 0) and consider
points Q for each metric. Note that the transformation w leaves the
origin P invariant (w(P) = P).

For the dj-metric we choose Q = (1,0). Then Q is transformed
into w(@Q) = (0.55,0.55), and we have

0.55 —0.55
0.55 0.55

di(w(P), w(Q)) = 0.55+0.55 = 1.1 > 1.0 = d,(P, Q).

Thus, in terms of the metric d1, the transformation w does not shrink
the distance between P and Q; w is not a contraction.

For the doo-metric we look at Q = (1,1). It is mapped to w{Q) =
(0,1.1), thus

doo(w(P), w(Q)) = max({0,1.1) = 1.1 > 1.0 = do (P, Q).

Thus, w is not a contraction with respect to d, either.
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Finally, let us examine the situation for the Euclidean metric. To
show that w is a contraction, we need to consider arbitrary points P =
(z,y) and Q = (u,v). Recall, that

d2(P,Q) = V(& —u)? + (y — v)2.
We compute the transformed points
w(P) = (0.55z2 — 0.55y,0.55z + 0.55y)
= 0.55(z —y,z +y)

w(Q) = (0.55u — 0.55v,0.55u + 0.55v)
= 0.55(u — v,u +v)

and their distance:

da(w(P), w(Q))

= 0.55\/((z —y) — (u— )2+ ((z +y) — (u+v))?
=055((z -9+ (+v)?-2z~y)(u—1)

—2(z +y)(u+v) + (u—v)* + (u+v)?)

1/2

= 0.55+/2(z? + 32) — 2(2zu + 2yv) + 2(u? + 2?)

= 0.55/2((z — u)2 + (y — v)?)
= 0.55v2dz(P, Q)

< d2(Pa Q)

Since the contraction factor is ¢ = 0.55v/2 ~ 0.778 < 1, we have
that w is a contraction with regard to the Euclidean metric da.

The Euclidean Metric
Is Not Always the
Choice

Let us take as an example a similarity transformation which is a composi-
tion of a rotation of 45°and a scaling by a factor of about 0.778. Figure 5.44
shows how this transformation acts upon the different unit sets."”> In each case
the transformed image is reduced in size, but only the transformed image of
the Euclidean unit disk is contained in the disk. In all other cases there is some
overlap, indicating that the transformation is not a contraction with respect to
the underlying metric.

Based on the above observation one might conjecture that the Euclidean
metric is special in the sense that it captures the contractivity of a transfor-
mation when other metrics do not. However, this is not the case. Take,
for example, a transformation which first rotates by 90°and then scales the
z-component of the result by 0.5, i.e.,

(w’ y) - (_O'Syv 1‘)

The unit sets are defined to be the sets of points with a distance not greater than 1 from the origin. Thus, they depend on the
metric used. For example, the unit set for the Euclidean metric is a disk, while it is a square for the maximum metric (see figures

5.44 and 5.46).
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Contraction and Metric

A transformation which rotates by
45°and scales by 0.778 is a contrac- 5 73

tion with respect to the Euclidean it 5
metric (center) but not with respect
to the lattice metric (left) or the max- %
imum metric (right).

Figure 544

Square Code

Coding of a square with only two ﬂ__l
transformations. The rotation of 90°
is crucial; without it the transforma-
tions would not be contractions.

initial image stage 1

Figure 5.45

Using two such transformations with appropriate translations added, we have
coded a square (see figure 5.45). It is easy to check that the square is in fact the
fixed point of the corresponding Hutchinson operator. But the transformations
are not contractions with respect to the Euclidean metric dy (the point (1,0)
is rotated to (0,1), and the subsequent scaling does not have an effect here).
Moreover, they are not contractions with respect to the lattice metric dy or the
maximum metric deo either. Therefore it seems an open question, whether the
corresponding IFS in fact does have the square as an attractor.

The question can be settled since there are metrics which make the trans-
formations contractive, see figure 5.46. The trick is to design the metric so
that it measures differently in the z- and y-directions. In this way the unit set
of all points with distance one or less from the origin becomes a rectangle,
which contains its transformed image.

Thus, we see that it may be important to find a suitable metric for an  Contraction Mapping
application of the contraction mapping principle. In particular the third part of Principle and IFS
the principle, which predicts how fast the iteration of the IFS will approach the
attractor, is effected by the quality of the metric. The smaller the contraction
ratio the better is the estimate for the speed of convergence of the IFS, and
the contraction ratio of course depends heavily on the choice of the metric.
The power to make a good prediction will be important in the context of the
inverse problem mentioned in section 5.5.
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A Special Metric

The transformation, which rotates

. ﬂ: by 90°and scales in x-direction with

i : factor 0.5, is neither a contraction

d=1 o relative to the maximum metric (top)
d=1 ) nor to the Euclidean or lattice met-

ric. But it is a contraction with re-
spect to a metric which measures
using different weights in z- and
____________________ y-direction (bottom). An example
ﬂ. is given by the metric d(P, Q) =
d=1 max{1.25|z—ul, jy—v|}. We show

the unit sets (center) and their im-
125 Pl ages under w(z,y) = (—0.5y,z)
(right).

Figure 5.46
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5.8 Composing Self-Similar Images

Several methods have been proposed for the automatic solution of the inverse
problem, i.e., the encoding of images, and it is still open what will be the
right choice. Therefore, we should discuss a few ideas, some of which go
back to Barnsley in the early 1980’s. These ideas, however, do not (yet)
lead to automatic algorithms, they are more suitable for interactive computer
programs requiring an intelligent human operator. Some automatic strategies
will be discussed in Fisher’s appendix on image compression.

Assume that we already have approximated a given original image by an
MRCM. Recall that the blueprint of an MRCM is already determined by the
first copy it produces. The copy is a collage of transformed images. Applying
the MRCM to the original image, called target image, one also determines the
quality of the approximation. When the copy is identical to the original, then
the corresponding IFS codes the target image perfectly. When the distance of
the copy to the target is small, then we know from the contraction mapping
principle, that the attractor of the IFS is not far from the initial image, which
is equal to the target image in this case. Figure 5.47 illustrates this principle
for the Sierpinski gasket.

These properties enable us to find the code for a given target image, in
particular for target images which contain apparent self-similarities such as
the fern. With alittle practice it is easy to identify portions of the picture which
are affine copies of the whole. For example, in the fern in figure 5.48 the part
R is aslightly smaller and rotated copy of the whole fern. This observation
leads to the numerical computation of the first affine transformation w; . The
same procedure applies to the copies R(®) and R'®) in the figure. Even the
bottom part of the stem (part R(*)) is a copy of the whole. However, this copy
is degenerate in the sense that the corresponding transformation contains a
scaling in one direction by a factor of 0.0, i.e., the fern transformed by w4
is reduced to a line. The resulting four transformations already comprise the
complete system since the portions RM to R® completely cover the fern.

In general we need a procedure to generate a set of transformations such
that the union of the transformed target images cover the target image as closely
as possible. Taking the example of a leaf we illustrate how this can be done
with an interactive computer program. In the beginning the leaf image must be
entered in the computer using an image scanner. Then the leaf boundary can be
extracted from the image using standard tools in image processing. The result
in this case is a closed polygon which can be rapidly displayed on the computer
screen. Moreover, affine transformations of the polygon can also be computed
instantly and displayed. Using interactive input devices such as the mouse,
knobs or even just the keyboard, the user of the program can easily manipulate
the six parameters that determine one affine transformation. Simultaneously
the computer displays the transformed copy of the initial polygon of the leaf.
The goal is to find a transformation such that the copy fits snugly onto a part of
the original leaf. Then the procedure is repeated, and the user next tries to fit
another affine copy onto another part of the leaf that is not yet covered by the

IFS Attractor and
MRCM Blueprint

Encoding Self-Similar
Images

Interactive Encoding:
The Collage Game
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first. Continuing in this way the complete leaf will be covered by small and
possibly distorted copies of itself. Figure 5.49 shows some of the intermediate
stages that might occur in the design of the leaf transformations.

initial image collage attractor

Let us exploit the contraction mapping principle from page 251 to an-
alyze the results of figure 5.47. The a priori estimate for a sequence
ag,ay, as, - - . Which is generated by a contraction f in a metric space
with attractor a. yields

Y13

d(n, o) < T cd(ao,al).
Here c is the contraction factor of f and ap.1 = f(ag)for k =
0,1,2,.... In particular, this means that
1
d(ao,aw) < 1—_—cd(ag,f(a0)). (5.2)

Thus, a single iteration starting from the initial ag gives us an estimate
for how far ag is from the attractor a., with respect to the metric d. Now
let us interpret this result for the Hutchinson operator W with respect to
the Hausdorff distance h. Let ¢ be the contraction factor of W and let
P be an arbitrary image (formally a compact subset of the plane). We
would like to test how good a given Hutchinson operator will encode

Testing Collages

Application of three MRCMs to a
Sierpinski gasket. Top: the correct
MRCM leaves the image invariant;
middle: areasonable approximation;
bottom: a bad approximation

Figure 547

Contraction Mapping Principle
and Collages
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Fern Collage

This fern is a slight modification of
the original Barnsley fern, allowing
an easier identification of its par-
tition into self-similar components
RM o RW

Figure 5.48

initial image blueprint

the given image P. This can be obtained from eqn. (5.2). Indeed, in
this setting (5.2) now reads

WP, As) < ﬁh(P, W(P)), (5.3)

where A, is the attractor of the IFS given by W. In other words, the
quality of the encoding, measured by the Hausdorff distance between
P and A, is controlled by applying the Hutchinson operator just once
to P and quantified by A(P, W (P)). Barnsley calls eqn. (5.3) the
‘collage theorem for iterated function systems’.
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Leaf Collage

Design stages for a leaf: scanned
image of a real leaf and a polygon
capturing its outline (top); collage
by seven transformed images of the
polygon and the attractor of the cor-
responding IFS (bottom).

Figure 549

Again it is the contraction mapping principle which says that the attractor
of the IFS will be close to the target image, the leaf, when the design of the
collage is also close to the leaf. In the attempt to produce as accurate a collage
as possible, there is a second goal that hinders exactness, namely, the coding
should also be efficient in the sense that as few transformations as possible
are used. The definition of an optimal solution to the problem must thus find
a compromise between quality of the collage and efficiency. The automatic
generation of collages for given target images is a challenging topic of current
research (see Fisher’s appendix on image compression).

The collage game is just one example of an entire class of mathematical
problems which goes under the name optimization problems. Such problems
are typically very easily stated but are often very difficult to solve even with
high-powered, supercomputer technology and sophisticated mathematical al-
gorithms.
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Optimization Problem for
Collages

The a priori estimate of the contraction mapping principle
1
h(P, Ax) < ﬁh(P,W(P))

gives rise to an optimization problem. Assume we are given a picture
P which we want to encode by an IFS. We decide to limit ourselves to
N contractions in the IFS, which have to be determined. Any N-tuple
wy,...,wy defines a Hutchinson operator W. We may further
assume that the contraction factors of the transformations we want to
consider are all less than or equal to some ¢ < 1. Following the above
estimate we have to minimize the Hausdorff distance'® h(P, W (P))

among all admissible choices of W.

A well-known example of this class of problems is the traveling salesman
problem, which goes as follows. Choose some number of towns (for example,
all U.S. towns with more than 10,000 inhabitants) and find the shortest route
which a salesman must travel to reach all these towns. We would really think
that a problem as simple as this should be no trouble for computers. But
the truth is that computers become totally useless as soon as the number of
towns chosen is larger than a few hundred. Problems of this kind are said
to be computationally complex and it is understood by now that they are
invariably resistant to quick solutions and always will be. The message from
such examples is that simple problems may not have simple answers, and we
can say that the sea of mathematics is filled with such animals. Unfortunately,
it is not yet clear whether the collage game can be mathematically formulated
in a way which avoids extreme computational complexity.'” In any case, it
is very likely that the computational complexity will be terrible for some
images and very manageable for others. The guess is that images which are
dominated by self-similar structures might be very manageable. That alone
would be reason enough to continue exploring the field simply because we see
such characteristics in so many of nature’s formations and patterns.

There are some other problems which lead directly into current research
problems which we want to at least mention.

The Curse of
Computational
Complexity

16The computational problem evaluating the Hausdorff distance for digitized images is addressed in R. Shonkwiller, An image

algorithm for computing the Hausdorff distance efficiently in linear time, Info. Proc. Lett. 30 (1989) 87-89.
""The algorithms discussed in the appendix on image compression try to circumvent this problem.
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5.9 Breaking Self-Similarity and Self-Affinity: Networking with

MRCMs

Creating an image with an MRCM quite naturally leads to a structure which
has repetition in smaller and smaller scales. In the cases where each of the
contractions involved in the corresponding IFS is a similarity with the same
reduction factor (for example, the Sierpinski gasket), we call the resulting
attractor strictly self-similar. Also when different reduction factors occur,
the resulting attractor is said to be self-similar. When the contractions are
not similarities, but affine linear transformations (for example, the devil’s
staircase), we call the resulting attractor self-affine.

Two Ferns

Two ferns different from Barnsley’s
fern. Observe that in both cases the
placement of the major leaves on the
stem differ from that of the small
leaves on the major ones. The two
ferns look the same at this scale, but
the blowups in the next figure reveal
important differences.

Figure 5.50

Non-Self-Similar Ferns

In any case, an IFS produces self-similar, or self-affine, images. As we
have pointed out, IFSs can also be used to approximate images that are not
self-similar or self-affine. The approximation can be made as accurate as
desired. However, the very small features of the corresponding attractor will
still reveal the self-similar structure. In this section of this chapter we will
generalize the concept of IFSs so that this restriction is removed.'®

Figure 5.50 shows two ferns which almost look like the familiar Barnsley
fern, but they are different. Upon close examination of the two ferns, we
observe that the phyllotaxis has changed. The placement of the major leaves
on the stem is different from that of the small leaves on the major ones. That

"Similar concepts are in M. F. Barnsley, J. H. Elton, and D. P. Hardin, Recurrent iterated function systems, Constructive
Approximation 5 (1989) 3-31. M. Berger, Encoding images through transition probabilities, Math. Comp. Modelling 11 (1988)
575-577. R. D. Mauldin and S. C. Williams, Hausdorff dimension in graph directed constructions, Trans. Amer. Math. Soc. 309
(1988) 811-829. G. Edgar, Measures, Topology and Fractal Geometry, Springer-Verlag, New York, 1990. The first ideas in this
regard seem to be in T. Bedford, Dynamics and dimension for fractal recurrent sets, J.London Math. Soc. 33 (1986) 89-100.
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Blowups of the Major Lower

|
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Right Leaf %\,\
Left: blowups of the left fern of fig-
ure 5.50 reveal the hierarchy (a): all
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|
9
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subleaves are placed opposing each Qﬁfd Y .
other. Right: blowups of the right %

fern reveal the hierarchy (b): the %‘\'\\ g S

subleaves of the major leaf again
show a placement with offset.

Figure 5.51

means that the major leaves are no longer scaled down copies of the entire
fern. In other words, these ferns are neither self-similar nor self-affine in
a strict sense. Nevertheless, we would say that they have some features of
self-similarity. But what are these features and how are these particular ferns
encoded? The answers to these questions will lead us to networked MRCMs,
or, in other words, hierarchical IFSs.

To see some of the hierarchical structure we now look at a blowup of one
of the major leaves from each of the ferns (see figure 5.51). This reveals the
different hierarchies in their encoding. The placement of the sub-subleaves is
different. On the left, the subleaves of all stages are always placed opposing
each other, while on the right, this placement alternates from stage to stage:
in one stage subleaves are placed opposing each other and in the next stage
subleaves are placed with an offset. For ease of reference let us call these
hierarchies type (a) and type (b).

We begin to see that the encoding by IFSs goes much beyond the problem
of image encoding. Understanding the self-similarity hierarchies of plants,
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Basic Machine for Fern

The feedback system of Barnsley’s
fern (without stem).

w](F) u 1112(!") U “IJ(F)

Networking MRCMs

Figure 5.52

for example, in terms of IFSs opens a new door to a formal mathematical
description of phyllotaxis in botany. We will see that self-similarity structures
can even be mixed.

We expand the concept of the MRCM to include several MRCMs operating
in a network. We will illustrate, how anon-self-similar fern can be obtained by
two networked MRCMs. To keep things as simple as possible, we disregard
the stems. Figure 5.52 displays the basic machine for a fern without stem.

Let us first consider the fern with hierarchy of type (a) from figure 5.51.
We can identify two basic structures: the entire fern D(1), and one of its major
leaves, say the one at the lower right, D® (see figure 5.53).

The leaf in this case is a self-similar, or more precisely, a self-affine struc-
ture. All subleaves are copies of the whole leaf and vice versa. The complete

Basic Structure
Division of a fern of hierarchy type
p lg (a) into its basic structures: the
II%&'; whole fern and one of its major
éé ¢ leaves.
{GVier
d é Y Ve
IV Y
v/ |
¥ ¥ e
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Figure 5.53
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Figure 5.54 : This network of two MRCMs generates the fern with the leaf placement given by the hierarchy of
type (a). The graph of the corresponding IFS is shown on the right.

fern is made up of copies of this leaf, but it is not simply a copy of the leaf.
This is due to the different placement of the leaves and subleaves. This is the
crucial difference between Barnsley’s self-affine fern and this one, where the
self-affinity is broken. Due to this breaking of self-similarity the fern cannot
be generated with an ordinary MRCM. However, we may join two different
machines to form a networked MRCM as shown in figure 5.54 which will
accomplish the task.

One of the machines (bottom) is used to produce the main leaf alone. This
machine works like the one for Barnsley’s fern (disregarding the stem for
simplicity). Thus, it has three transformations: one transformation maps the
entire leafto its lower left subleaf, the second maps to the corresponding upper
left subleaf, and finally, the third transformation maps the leaf to all subleaves
except for the bottom subleaves, which are already covered by the other two
transformations.

The other machine (top) produces the whole fern. It has two inputs and
one output. One input is served by its own output. The other input is served
by the bottom MRCM. There are also three transformations in this machine.
However, each transformation is applied to only one particular input image.
Two transformations (wg and w3 in the figure 5.54) operate on the results
produced by the bottom MRCM. These produce the left and right bottom leaves
at the proper places on the fern. The other transformation (w; in the figure)
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Figure 5.55 : This network of two MRCMs generates the other fern with the leaf placement given by hierarchy of
type (b).

Rearranging Input
Connections

operates on the results from the top MRCM. The results of all transformations
are merged when they are transferred to the output of the top machine. This is
indicated by the ‘U’ sign. Transformation w; maps the entire fern to its upper
part (i.e., the part without the two bottom leaves). This was also the case in
the plain MRCM for Barnsley’s fern. In this way the fern with the prescribed
pattern for the leaf placement from hierarchy of type (a) will be generated.

In order to produce the fern as in hierarchy of type (b), we need to go just
a small step further interconnecting the two MRCMs both ways. This fern is
characterized by the fact that the entire fern reappears in the main leaves as
subleaves, while the main leaves themselves are not copies of the entire fern.
This is easy to do as shown in figure 5.55. The only change relative to the
network for the hierarchy (a) fern is given by the extra input in the bottom
MRCM. This input image (in the limit it is the entire fern) will be transformed
to make the two lowest subleaves of the leaf.

But how do we run these networks? Well, we just take any initial image,
like a rectangle, and put it on the two copy machines. The machines take these
input images following to the connections of the input lines and produce two
outputs, one for the main leaf and one for the fern. These outputs are now
used as new inputs as indicated by the feedback connections. When we iterate
this process we can observe how the leaf-MRCM creates the major lower right
hand leaf and how the fern-MRCM generates the complete fern.
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Is the successful operation of this machinery just a pure accident? Not
at all! Above, we discussed the contraction mapping principle. It turns out
that we can also subsume the network idea under that principle, which shows
the value of that rather abstract but very powerful mathematical tool. In
conclusion, the networking machine has exactly one limit image, its attractor,
and this attractor is independent of the initial images. To put it another way,
the networking machines are encodings of non-self-similar ferns, and their
hierarchies decipher the self-similarity features of these ferns. In fact, the
hierarchy of the network deciphers the self-similarity of an entire class of
attractors. Imagine that we change the contraction properties and positioning
of the individual lens systems. As aresult, we will obtain an entire cosmos
of structures. However, each of them has exactly the same self-similarity
features. We have thus reached the beginning of a new and very auspicious
theory which promises to systematically decipher all possible self-similarity
properties. The mathematical description of networked MCRMs is the topic
of the remainder of this section.

The Contraction
Mapping Principle
Does It Again

Formalism of Hierarchical IFSs There is an extension of the concept of a Hutchinson operator for a
network of MRCMs. It requires working with matrices. Let

a1 @12 aim
A =

Gm1  Am2 cae Omm

be an (m x m)-matrix with elements a;; and let

by

bm

be an m-vector. Then Ab is the m-vector ¢

¢; , where

m
C; = E aijbj.

i=1

Ab with components

In analogy to this concept of ordinary matrices, a hierarchical IFS
(corresponding to a network of M MRCMs) is given by an (M x M)-

matrix

Wi - Wim

W= :
War .. Wuwm

where each W;; is a Hutchinson operator (i.e., W;; is given by a finite
number of contractions). This is the matrix Hutchinson operator W,
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which acts on an M-vector B of images
B,

B= :
By

where each B; is a compact subset of the plane R%. The result of
W(B) is an M-vector C with components C;, where

M
Ci = |J wu(By).

=1

It is convenient to allow that some of the Hutchinson operators are
‘empty’, W;; = @. Here the symbol @ plays a similar role as 0 in
ordinary arithmetic: the @ operator transforms any set into the empty
set (i.e., for any set B we have §(B) = ).

Next we make a natural identification. The network of MRCMs cor-
responds to a graph with nodes and directed edges. For the output of
each MRCM there is exactly one node, and for each output-input con-
nection in the network there is a corresponding directed edge. These
graphs, displayed next to our MRCM networks, are a compact repre-
sentation of the hierarchy of the IFSs (see, for example, the non-self-
similar ferns and the Sierpinski fern).

Note that a directed edge from node 7 to node i means that the
output of 7 is transformed according to a specific Hutchinson operator
(i.e., the one that operates on the corresponding input of the MRCM)
and then fed into node 4. The output of this node is the union of all
the transformed images which are fed in. Now we define W;;. If
there is a directed edge from node j to node ¢, then W;; denotes the
corresponding Hutchinson operator. In the other case we set W;; = @.
For our examples we thus obtain

_ w1 wo U w3
W—( 1) ’lU4U’lU5U’LU6>

for the fern of type (a),

W=( wy wy U ws )
ws U wg wy

for the fern of type (b), and

wy; waUwg ]
W = ] Wy ws U weg
0 @ w7 Uwsg Uwg

for the Sierpinski fern. Observe that here we have used a short form
for writing Hutchinson operators. For example, when transforming any
set B by wo U w3 we write

wy Uws(B) = wy(B) U ws(B).
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Figure 5.56 :

A network of three MRCMs to generate a fern which is made up of Sierpinski gaskets.

With these definitions we can now describe the iteration of a hier-
archical IFS formally. Let Ay be an initial M-vector of images. The
iteration defines the sequence of M-vectors

W(AL), k=0,1,2,...

It turns out that this sequence again has a limit A ~,, which we call the
attractor of the hierarchical IFS.

The proof is again by the contraction mapping principle. We start
with the plane equipped with a metric such that the plane is a complete
metric space. Then the space of all compact subsets of the plane with
the Hausdorff distance as a metric is also a complete metric space.
Now we take the M-fold Cartesian product of this space and call it H.
On H there is a natural metric dmax which comes from the Hausdorff

A1 =
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The Sierpinski Fern and One
of Its Main Leaves

Figure 5.57

distance: Let A and B be in H, then
dmax(A,B) = max{h(Ai, Bi) ’ 1= 1, Ces ,M} ,

where A; and B; denote the components of A and B and h(A;, B;)
denotes their Hausdorff distance. It follows almost from the definitions
that

e [ is again a complete metric space, and
¢ W : H — H is a contraction.

For completeness we must add the requirement that the iterates
‘W™ of the matrix Hutchinson operator do not consist entirely of
(-operators. Thus, the contraction mapping principle applies with the
same consequences as for the ordinary Hutchinson operator.

The Sierpinski Fern To finish this section we will use the networked MRCMs for a rather strange
looking fern, which we may call the Sierpinski fern (see figure 5.57). It is the
fern of hierarchy (a) with subleaves replaced by small Sierpinski gaskets. The
network incorporates three MRCMs as shown in figure 5.56. The first two
are responsible for the overall structure of the fern as before, while the third
is busy with producing a Sierpinski gasket which is fed to one of the other
machines.

The experiment generating a Sierpinski fern demonstrates that networked
MRCMs are suitable discussing and encoding hierarchies of self-similarity
features, and, moreover, is the appropriate concept mixing several fractals
together.
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Figure 5.58 : The lower MRCM generates a line which is fed into the upper MRCM to build the stem of the fern.

When we introduced Barnsley’s fern by an MRCM we observed that it
was not strictly self-similar, the problem being first of all in the stem. There
we obtained the stem from a degenerate affine linear copy of the whole fern
(i.e., collapsed to a line). From the point of view of networked MRCMs this
aspect becomes much clearer. The design in figure 5.58 is a network with two
MRCMs. The top machine produces the leaves and the bottom machine the
stems. From that point of view Barnsley’s fern is essentially a mix of two
(strictly) self-similar structures.

The variety of structures which can be obtained by networked MRCMs is
unimaginable. As an application of networked MRCMs we present in chapter 8
an elegant solution to some long-standing open problems: the deciphering of
the global geometric patterns in Pascal’s triangle, which are obtained from
divisibility properties of binomial coefficients.

Networked MRCMs also bring us a step closer to a solution of the problem
of automatic image encoding. The encoding by iterated function systems only
leads to self-similar approximations of the target image. With networked
MRCMs we break the target image into pieces which can be encoded more or
less independently. This results in an approximation with mixed self-similarity
structures. This concept can be formalized by the so-called partitioned IFS
(see the appendix on image compression).

The Stem in Barnsley’s
Fern

“More precisely, the fern without the stem is self-affine, not self-similar, because the transformations which produce the leaves

are only approximate similitudes.



Chapter 6

The Chaos Game: How Randomness
Creates Deterministic Shapes

Brownian Motion

Nothing in Nature is random...A thing appears random only through the
incompleteness of our knowledge.
Spinoza

Our idea of randomness, especially with regard to images, is that structures
or patterns which are created randomly look more or less arbitrary. Maybe
there is some characteristic structure, but if so, it is probably not very inter-
esting — like a box of nails poured out onto a table.

Or look at the following example. Small particles of solid matter suspended
in a liquid can be seen under a microscope moving about in an irregular and
erratic way. This is the so called Brownian motion," which is due to the random
molecular impacts of the surrounding particles. It is a good example of what
we expect from a randomly steered motion. Let us describe such a particle
motion step by step. Begin at a point in the plane. Choose a random direction,
walk some distance and stop. Choose another random direction, walk some
distance and stop, and so on. Do we have to carry out the experiment to be
able to get a sense of what the evolving pattern will be? How would the pattern
look after 100, or 1000, or even more steps? There seems to be no problem
forecasting the essential features: we would say that more or less the same
patterns will evolve, however, just a bit more dense.

In any event, there doesn’t seem to be much to expect from randomness
in conjunction with image generation. But let us try a variant which, at first
glance, could well belong to that category. Actually, following Barnsley® we

"The discovery was made by the botanist Robert Brown around 1827.
M. F. Barnsley, Fractal modelling ofreal world images, in: The Science of Fractal Images, H.-O. Peitgen and D. Saupe (eds.),
Springer-Verlag, New York, 1988.
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The Chaos Game Board and
the First Steps ...

The first six steps of the game.
Game points are connected by line
segments.

Figure 6.1

are going to introduce a family of games which can potentially change our
intuitive idea of randomness quite dramatically.

Here is the first game of this sort. We need a die whose six faces are labeled The Chaos Game
with the numbers 1, 2, and 3. An ordinary die, of course, uses numbers from 1
to 6; but that does not matter. All we have to do is, for example, identify 6 with
1, 5 with 2, 4 with 3 on an ordinary die. Such a die will be our generator of
random numbers from the reservoir 1, 2, and 3. The random numbers which
appear as we play the game, for example, 2, 3, 2, 2, 1, 2, 3, 2, 3, 1, ...,
will drive a process. The process is characterized by three simple rules. To
describe the rules we have to prepare the game board. Figure 6.1 shows the
setup: three markers, labeled 1, 2, and 3, which form a triangle.

Now we are ready to play. Let us introduce the rules as we play. Initially
we pick an arbitrary point on the board and mark it by a tiny dot. This is our
current game point. For future reference we denote it by z3. Now we throw the
die. Assume the result is 2. Now we generate the new game point z;, which
is located at the midpoint between the current game point 2o and the marker
with label 2. This is the first step of the game. Now you can probably guess
what the other two rules are. Assume we have played the game for k steps.
We have thus generated 21, .. ., 2;. Roll the die. When the resultis n generate
a new game point zx41,, which is placed exactly at the midpoint between zj,
and the marker labeled n. Figure 6.1 illustrates the game. To help identify
the succession of points, we connect the game points by line segments as they
evolve. A pattern seems to emerge which is just as boring and arbitrary as the
structure of a random walk. But that observation is a far cry from the reality.
In figure 6.2 we have dropped the connecting line segments and have only
shown the collected game points. In (a) we have run the game up to k = 100,
in (b) up to & = 500, in (c) up to & = 1000, and in (d) up to k = 10, 000 steps.

The impression which figure 6.2 leaves behind is such that we are inclined, Randomness Creates
at first, not to believe our eyes. We have just seen the generation of the Sier- Deterministic Shapes
pinski gasket by a random process, which is amazing because the Sierpinski
gasket has become a paragon of structure and order for us. In other words, we
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...and the Next Game Points

The chaos game after 100 steps (a),
500 steps (b), 1000 steps (c), and
10,000 steps (d). Only the game
points are drawn without connecting
lines. (Note that there are a few spu-
rious dots that are clearly not in the

Sierpinski gasket.)

Figure 6.2

have seen how randomness can create a perfectly deterministic shape. To put it
still another way, if we follow the time process step by step, we cannot predict
where the next game point will land because it is determined by throwing a
die. But nevertheless, the pattern which all the game points together leave
behind is absolutely predictable. This demonstrates an interesting interplay
between randomness and deterministic fractals.

But there are a few — if not many — questions about this interaction. For
example, how can we explain the small specks which we observe upon close
examination of the images in figure 6.2 and which definitely do not belong
to the Sierpinski gasket? Or what happens if we use another die, maybe one
which is slightly or severely biased? In other words, does the random process
itself leave some imprint or not? Or is this creation the result of a special
property of the Sierpinski gasket? In other words, are there chaos games
which produce some other, or even any other, fractal as well as the Sierpinski

gasket?
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6.1 The Fortune Wheel Reduction Copy Machine

As you may have guessed, there are many variations of the chaos game, which
produce many different fractals. In particular, all images that can be generated
by means of a Multiple Reduction Copy Machine of the last chapter are also
accessible using the chaos game played with appropriate rules. This is the
topic of this section.

The basic rule of the above chaos game is: generate a new game point
zx+1 by picking the midpoint between the last game point z; and the randomly
chosen marker, which is represented by a number from the set {1,2,3}. The
three possible new game points can be described by three transformations, say
w1, Wz, and wg applied to the last game point. What kind of transformations
are these? Itis crucial to observe that they are the (affine linear) transformations
which we discussed for the Sierpinski gasket in chapter 5. There we interpreted
them as mathematical descriptions of lens systems in an MRCM. In fact, here
each w, is just a similarity transformation which reduces by a factor of 1/2
and is centered at the marker point n. That implies, that w,, leaves the marker
point wi